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Abstract—Sleep is associated with important changes in 
respiratory rate and ventilation. Currently, breathing rate (BR) 
is measured during sleep using an array of contact and 
wearable sensors, including airflow sensors and respiratory 
belts; there is need for a simplified and more comfortable 
approach to monitor respiration. Here, we present a new 
method for BR evaluation during sleep using a non-contact 
microphone. The basic idea behind this approach is that during 
sleep the upper airway becomes narrower due to muscle 
relaxation, which leads to louder breathing sounds that can be 
captured via ambient microphone. In this study we developed a 
signal processing algorithm that emphasizes breathing sounds, 
extracts breathing-related features, and estimates BR during 
sleep. 

A comparison between audio-based BR estimation and BR 
calculated using the traditional (gold-standard) respiratory 
belts during in-laboratory polysomnography (PSG) study was 
performed on 204 subjects. Pearson's correlation between 
subjects' averaged BR of the two approaches was R=0.97. 
Epoch-by-epoch (30 s) BR comparison revealed a mean relative 
error of 2.44% and Pearson's correlation of 0.68. This study 
shows reliable and promising results for non-contact BR 
estimation. 
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I. INTRODUCTION 

In recent years, several studies have explored new 
approaches to estimate breathing rate (BR) during sleep 
using minimal contact (non-disturbing) sensors. Bates et al. 
[1] explored the ability of a tri-axial accelerometer worn on 
the torso to record breathing activity and to calculate BR 
(wireless). They compared their BR estimation with nasal 
cannula sensor and showed a correlation of 0.870-0.928. 
Johnston and Mendelson [2] used a photo-plethysmographic 
signal that was recorded by a reflectance pulse oximeter 
sensor mounted on the subject's forehead. Their BR analysis 
was subsequently processed by a time domain filtering and 
frequency analysis; they showed, qualitatively, a good 
agreement between their approach and respiratory belts. 
Murthy et al. [3] estimated respiratory rate using a sensitive 
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thermal infra-red (IR) camera (thermal sensitivity of 
0.025°C); They measured airflow due to temperature 
difference resulting from respiratory activity. Accuracy of 
BR estimation between 83% and 98% depending on the 
tested subject (10 participants) was reported. 

Breathing activity involves pressure waves that generate 
breathing sounds due to the flow of air in high resistance 
airways. As soon as a person falls asleep, there is decreased 
activity of the pharyngeal dilator muscles, resulting in air 
turbulence and more audible breathing sounds [4, 5]. 
Breathing sound during sleep may exhibit a wide range of 
sound intensity, ranging from very quiet to very loud 
(typically observed as snore) [6]. Recently, we have shown 
that it is possible to detect even quiet breathing sounds with 
a non-contact microphone, characterized by sound intensity 
of about 20 dB (lower than a quiet bedroom’s noise) [7-9]. 
Using noise reduction and breathing emphasis algorithms [7-
9], we found that most of breathing cycles are captured, 
making BR estimation from breathing sound feasible. 

In the current study, we developed a non-contact audio-
based BR estimation (during sleep) algorithm. By taking 
advantage of the nature of breathing activity, i.e., breathing 
is repetitive and statistically periodic, BR estimation can be 
reliable. To our knowledge, this is the first reported attempt 
to determine BR from breathing sounds using non-contact 
audio signals during sleep. This proposed algorithm 
produces reliable BR estimations regardless of gender, age, 
body-mass-index (BMI), apnea-hypopnea-index (AHI), and 
snoring intensity, and is suitable for other related audio-
based (sleep) diagnoses. 

II. METHODS 

A total of 204 patients were recorded at the Sleep-Wake 
Disorder Unit (Soroka University Medical Center) during 
routine PSG study. The Institutional Review Committee of 
Soroka University Medical Center approved this study 
protocol (protocol number 10141). All patients were 
recorded using a digital audio recording device (Edirol R-4 
Pro) connected to a non-contact microphone (RØDE NTG-
1) that was placed 1.0 m above the patient's head. Sixty of 
the patients were also recorded using a handy audio recorder 
(Olympus LS-5) that was positioned on the dresser behind 
the patient’s head. BRs, estimated using the audio 
recordings, were compared to the gold standard respiratory 
activity monitoring, achieved using abdomen and chest 
effort belts, which are based on respiratory inductance 
plethysmography (RIP) (SomniPro 19 PSG, Deymed 
Diagnostic, Hronov, Czech Republic). The acquired audio 
signals were digitized and stored at 16 kHz, 16 bits. RIP 
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channels were stored at 40 Hz, 16 bits. Each subject's BR 
was estimated continuously throughout the night in two 
different ways: 1) using analysis of RIP signals from the 
PSG, and 2) using analysis of the audio signal that was 
recorded using the digital audio recorder. Both estimations 
of BR were compared in order to evaluate the similarities 
between the approaches. The comparison includes a variety 
of statistical analysis tools (see section D). 

 
Figure 1. Block-diagram of the BR estimation algorithm. 

Figure 1 presents the block diagram of the BR estimation 
algorithm using both of the approaches (RIP and audio 
signals). The RIP approach includes two channels that 
measure the abdomen and thorax activities. The RIP 
channels were processed in the BR module (see BR module 
section) to estimate the BR. 

In the Audio signal approach, the audio signal undergoes 
an adaptive noise reduction technique to suppress any 
stationary background noise that disrupts and covers 
breathing events. Next, the enhanced signal follows a 
periodicity enhancement module that aims to suppress 
spectral components that did not follow any periodic pattern. 
The final stage in this process of BR estimation is the BR 
module (same as in the RIP approach but for different 
signals). 

A. Audio and PSG-RIP signals 

Our proposed algorithm of BR estimation can be applied 
on either audio signals or on PSG RIP signals with the 
appropriate preprocessing modules. 

Audio signal – In order to reliably capture breathing 
cycles, a breathing signal enhancement procedure is 

required. The first step is to remove adaptively any 
stationary background noise such as air-conditioner or fan 
noises. We used our previously designed noise reduction 
algorithm [7], which results in an average of +6 dB signal-
to-noise-ratio enhancement. The next step is to remove short 
transient noises (<200ms [7]) that are unlikely to be related 
to breathing activity. In order to do so, we remove these 
noises using 400 ms median filter (temporal filtering) on the 
signal's spectrum components.  

Luckily, breathing activity is a repetitive process that 
usually involves periodic intervals. We took advantage of 
this phenomenon to further enhance the periodicity of the 
audio signal in a segmented window (see section B) by 
eliminating 75% of the least periodic spectral components of 
the audio signal (keeping 64 out of 256 spectral coefficients 
of STFT). For more information see a detailed explanation 
of this process in [8]. The outcome of the two steps listed 
above is a 2D image (matrix) with 64 spectral components 
(64 rows in the matrix) calculated from 50ms frames at 40 
Hz frame-rate (each column represents a time frame). 

PSG RIP signals – PSG RIP signals are designed to 
capture any changes in abdomen and thorax perimeters as 
the subject dynamically changes his lung volume in order to 
breathe. These changes are periodic and follow the subject's 
breathing cycle. The whole night RIP signals are then 
processed on the BR module as a 2D image (matrix) with 
two signals (two rows). 

B. BR module 

The BR module represents the core of the BR estimation 
process. The module input is either the RIP signals (2D 
image, 2 rows) or a presentation of the spectral contents of 
the audio signal thought the night (2D spectrogram, see 
section C). Inputs are segmented into either 12s or 20s 
windows in 5s time increments. Segment lengths are 
arbitrarily selected in order to capture the several breathing 
cycles that are needed for BR estimation and yet not too long 
window, which will result in a smeared BR; a reasonable 
value of 15 BR/min will contain three and five respiratory 
cycles in 12s and 20s windows, respectively).  Each segment 
(12s or 20s window, separately) undergoes a breathing 
interval estimation stage. The breathing interval (BI) 
estimations from both segment lengths will later be 
averaged, and resampled to the standard 30s epoch rate. The 
outcome of the BR module will be calculated to form a BR 
per minute using the transformation function BR=60/BI. 

C. Breathing interval estimation 

The BI estimation block calculates from the segmented 
window the most likely breathing interval sequence during 
the night using a periodicity measurement. Periodicity 
measurement is calculated for every signal i (64 audio-
related signals or two RIP signals) in a window segment, and 
it resembles the autocorrelation function as described in (1) 
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where l represents the time-lag in samples, T represents the 
window's length in seconds, FR represents the frame-rate for 
the input signals in Hz. We calculate time-lags up to 75% of 
window's length to remove non-reliable estimations 
(insufficient number of samples). Figure 2A demonstrates an 
example of such P function computed from 20s windows 
during the night (2D image). In this example, the P function 
calculated on the averaged 25% (i.e., 64) most periodic 
frequency components [8] in each segmented window.  

 
Figure 2: Example of the breathing interval estimation. A) The 

autocorrelation function P according to Eq.(1). B) The enhanced breathing 
intervals after emphasis of the general BIPF4,2. C) The enhanced breathing 
intervals after emphasis of the optimal BIPF. The black line represents the 
shortest path acquired using Dijkstra's algorithm. Y axes are present time-

lag in seconds rather than samples for convenient. 

Once an enhanced 2D image of autocorrelation along 
time is achieved, another breathing period emphasis process 
is applied to the 2D image. The emphasis process consists of 
two consecutive steps in order to find the individual's BI 
probability function (BIPF); see equation (2): 
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where N is the normal distribution with mean of µ seconds, 
and standard deviation of σ; the Sigmoid function (inside the 
square brackets in (2)) aims to attenuate impossibly low BI; t 
is the time index (seconds). We formulated this function to 
achieve realistic BI probabilities based on empiric trials. 
Figure 3 shows illustrations of three BIPF functions. 

 
Figure 3: Breathing interval probability function (BIPF). This function was 

formulated in order to emphasize the most probable breathing intervals. 

In order to find an individual's BIPF two parameters, the 
first step includes searching the subject's most recurrent BI 
according to the autocorrelation peaks histogram extracted 
from the 2D image (initial values of µ=4s and σ=2, 
providing a reasonable BR of 15 cycles per minute). See 
Figure 2B. 

Once the most recurrent BI is calculated, the optimal µ 
and σ are estimated and will be used for breathing emphasis. 
For further simplicity, we denote the multiplication between 
the 2D image of autocorrelation and the optimal BIPF as W. 
See Figure 2C. 

Based on a priori knowledge of the subject's BIs, the 
final stage in the breathing interval estimation module is to 
find the most likely BI sequence in W throughout the night. 
In order to do so, we used the Dijkstra shortest-path 
algorithm [10]. The advantage of this algorithm is its ability 
to find the optimal path (BI sequence) while coping with 
"unsuccessful" periodicity measurements during this 
process. We constructed a nodes path according to the 2D 
image from left to right (beginning to ending), where each 
node is connected to nine adjacent nodes located on the 
right, with a "distance" determined by the corresponding W 
values. For example, the Nodel,t is connected to Nodel+j,t+1 
where j is an integer between -4 and +4. This node path 
connectivity will allow a reasonable dynamic change rate of 
BI (a maximum BI change of ±450ms in 30s). A 
demonstration of the process is presented in Figure 2C. The 
starting and ending nodes are forced to be between 2s and 8s 
breathing interval zones (8-30 BR/min). 

D. Comparison and Analysis 

Based on the two estimations of BR (audio and PSG), we 
evaluated within- and between-subjects comparisons. 
Within-subjects comparison for each individual's BR 
estimations (epoch by epoch) included: mean absolute error 
(MAE), mean square error (MSE), mean relative error 
(MRE), and Pearson's correlation (Rind). Between-subjects 
comparison included a global score of correlation (Rglob) to 
the subject's mean BR using both approaches. The influences 
of anthropometric parameters on BR estimation results were 
also examined. 

III. RESULTS AND DISCUSSION 
Two major types of measurements were executed in 

order to assess the similarities between BR estimations 
according to the two approaches (audio and PSG). Figure 4 
presents global estimation of a subject's mean BR using both 
approaches (left panel), and histograms of within-subjects', 
epoch-by-epoch, similarity scores (right panels). 

 
Figure 4: Comparison of BR estimations. On the left panel, mean BR 

according to audio and PSG approaches – each dot represents an individual 
subject. The dashed line represents the identity y=x. To the right, 

histograms of several comparison (epoch-by-epoch) measurements of BR 
for each individual, including mean absolute error (MAE), mean squared 

error (MSE), mean relative error (MRE) in %, and Pearson's correlation (R). 
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A detailed analysis is presented in Table I. The 
comparison also evaluates the similarities under 
anthropometric parameters' break-down including: gender, 
age, body mass index (BMI), obstructive sleep apnea 
severity of apnea hypopnea index (AHI), and snores' 
intensity (OSI [7]). 

TABLE I.  BREATHING RATE ESTIMATIONS AND COMPARISON 

 Group N Between subjects Within subjects 
Audio RIP Rglob MAE MSE MRE Rind 

 All+PSG 264 
17.6 
(3.3) 

17.1 
(3.2) 

0.972 
0.42 

(0.21) 
0.61 

(0.25) 
2.44

(1.20)
0.68

(0.16)

 Edirol+PSG 204 
17.6 
(3.4) 

17.0 
(3.3) 

0.974 
0.41 

(0.22) 
0.61 

(0.26) 
2.43

(1.24)
0.68

(0.16)

 LS-5 +PSG 60 
17.5 
(3.1) 

16.9 
(3.0) 

0.966 
0.42 

(0.19) 
0.58 

(0.21) 
2.47 

(1.07)
0.68

(0.17)

 Males 173 
17.4 
(3.3) 

16.9 
(3.2) 

0.977 
0.39 

(0.20) 
0.58 

(0.24) 
2.34

(1.15)
0.70

(0.17)

 Females 91 
18.0 
(3.2) 

17.4 
(3.0) 

0.960 
0.47 

(0.22) 
0.67 

(0.27) 
2.71

(1.27)
0.64

(0.15)

 Age≤50 104 
17.2 
(3.5) 

16.8 
(3.3) 

0.989 
0.35 

(0.19) 
0.54 

(0.24) 
2.09

(1.01)
0.73

(0.16)

 Age>50 160 
17.7 
(3.2) 

17.1 
(3.2) 

0.963 
0.45 

(0.22) 
0.64 

(0.25) 
2.64

(1.27)
0.66

(0.16)

 BMI≤30 119 
16.7 
(3.0) 

16.3 
(3.0) 

0.995 
0.37 

(0.18) 
0.57 

(0.22) 
2.28

(1.00)
0.68

(0.16)

 BMI>30 145 
18.3 
(3.4) 

17.6 
(3.3) 

0.963 
0.45 

(0.24) 
0.63 

(0.27) 
2.56

(1.34)
0.68

(0.17)

 AHI≤15 136 
17.4 
(3.2) 

16.9 
(3.1) 

0.970 
0.41 

(0.21) 
0.61 

(0.21) 
2.35

(1.21)
0.69

(0.16)

 AHI>15 128 
17.7 
(3.4) 

17.2 
(3.4) 

0.975 
0.41 

(0.21) 
0.60 

(0.20) 
2.40

(1.20)
0.69

(0.17)

 OSI≤40 82 
17.2 
(3.1) 

16.4 
(2.7) 

0.972 
0.47 

(0.23) 
0.69 

(0.28) 
2.88

(1.28)
0.65

(0.15)

 OSI:40-55 127 
17.8 
(3.3) 

17.2 
(3.2) 

0.975 
0.43 

(0.21) 
0.63 

(0.24) 
2.48

(1.17)
0.67

(0.16)

 OSI>55 55 
17.6 
(3.7) 

17.1 
(3.6) 

0.987 
0.36 

(0.22) 
0.51 

(0.22) 
2.11

(1.13)
0.72

(0.18)

Values are mean (std). Parameters are: mean absolute error (MAE), mean 
squared error (MSE), mean relative error (MRE) in %, and Pearson's 

correlation (R). 

No significant differences were observed in the 
anthropometric parameters including gender, age, BMI, 
AHI, and OSI. This finding indicates the robustness of the 
proposed BR estimation approach using non-contact 
microphone. 

 
Figure 5: Typical example of BR estimation using RIP and audio-based 
methods (Male, age=54, BMI=27, AHI=9). Upper panel, macro sleep 
stages: wake, rapid-eye-movement (REM) sleep, and non-REM sleep 
according to the gold-standard PGS. In this example, similarity tests 
revealed: MAE=0.72, MSE=0.81, MRE=2.01% and R=0.63. Note that 
during REM sleep, BR pattern has high variability, suggesting high 

cognitive activity. 

Figure 5 shows a typical example of BR estimations 
using both approaches. In addition, this example shows that 
BR measurement possesses some information that can 
indicate subject's sleep stages and even provide a bio-marker 
for sleep apnea presence (high BR variability). 

IV. CONCLUSIONS AND FUTURE WORK 

In this study we proposed a novel and robust method for 
estimation of BR using non-contact audio analysis. This 
method does not interfere with subjects' sleep, thus 
preserving natural sleep. The proposed algorithm can be 
applied to a variety of systems that require on-going BR 
monitoring. Moreover, BR estimation may be useful for 
assisting sleep/breathing diagnostic systems that rely on 
audio signals [7-9, 11-13]. Encouraged by our findings 
(Figure 5) regarding the relationship between BR dynamics 
and macro sleep stages, in the future we plan to explore the 
ability to differentiate between REM-sleep and non-REM 
sleep based on BR properties. 
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