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ESTIMATION OF SLEEP QUALITY
PARAMETERS FROM WHOLE NIGHT
AUDIO ANALYSIS

FIELD OF THE INVENTION

[0001] The present invention relates to the field of signal
processing. More particularly, the present invention relates
to a system and method for analyzing audio signals to detect
sleep conditions.

BACKGROUND OF THE INVENTION

[0002] During routine sleep diagnostic procedure, sleep is
broadly divided into three states: rapid eye movement
(REM), non-REM (NREM) states, and wake, frequently
named macro-sleep stages (MSS). In order to treat people
with sleep disorders, it is important to gather information
regarding their MSS during the duration of their sleep.
[0003] The gold standard for sleep evaluation is Polysom-
nography (PSG) that requires a full night stay in a sleep
laboratory, while being monitored by a large number of
contact-based electrodes and sensors. Sleep is scored by a
certified technologist who examines dozens of full-night
physiological signals. This procedure is time-consuming and
costly. It has long waiting lists and may not be suitable for
mass population. It may involve recording the following:
electroencephalogram (EEG), electrooculogram (EOG),
electromyogram (EMGQ), electrocardiogram (ECG), air flow,
thoracic and abdominal movement, oximetry, body position.
Aside from the special and expensive equipment, the trained
technician is required to attach the sensors correctly and an
expert analyzes the recorded signals for an accurate assess-
ment. The waiting lists for sleep diagnosis are up to several
months, due to lack of beds in the sleep centers. The patients
are forced to spend a whole night in an unfamiliar environ-
ment, attached to various movement-limiting sensors, with
an inevitable effect on the sleep quality of the patient. Due
to these disadvantages, new methods for sleep estimation are
needed that will be more comfortable, non-invasive and
have a lower cost.

[0004] Non-contact methods for sleep estimation, some
audio-based, were developed in order to enable patients to
undergo the diagnostic procedure at home.

[0005] WO 2013/179254 relates to a method of distin-
guishing sleep period states that a person experiences during
a sleep period. The method comprises: using a non-contact
microphone to acquire a sleep sound signal representing
sounds made by a person during sleep; segmenting the sleep
sound signals into epochs; generating a sleep sound feature
vector for each epoch; providing a first model that gives a
probability that a given sleep period state experienced by the
person in a given epoch exhibits a given sleep sound feature
vector; providing a second model that gives a probability
that a first sleep period state associated with a first epoch
transitions to a second sleep period state associated with a
subsequent second epoch; and processing the feature vectors
using the first and second models to determine a sleep period
state of the person from a plurality of possible sleep period
states for each of the epochs.

[0006] WO 2012/025892 relates to an apparatus and
method for diagnosing obstructive sleep apnea comprising:
acquiring a sleep sound signal comprising sounds made by
a person during sleep; detecting a plurality of snore sounds
in the sleep sound signal; determining a set of mel-frequency
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cepstral coeflicients for each of the snore sounds; determin-
ing a characterizing feature for the sleep sound signal
responsive to a sum of the variances of the cepstral coeffi-
cients; and using the characterizing feature to diagnose
obstructive sleep apnea in the person.

[0007] WO 2014/115115 relates to determining apnea-
hypopnia index (AHI) from speech. The method relates to
determining a value for an apnea-hypopnea index (AHI) for
a person, comprising: recording a voice track of a person;
extracting features from the voice track that characterize the
voice track; and processing the features to determine an
AHIL.

[0008] In recent years, efforts have been devoted to seek-
ing alternatives for PSG evaluation. These technologies
typically rely on the assumption that movement is associated
with wakefulness phase and vice versa. Some approaches
evaluate sleep using heart rate variability and even using
peripheral arterial tone signals. The most popular method for
at home sleep evaluation is wristwatch actigraphy. However,
this method estimates a binary decision about sleep and
wake patterns and cannot monitor REM. In a previous study
[E. Dafna, A. Tarasiuk, and Y. Zigel, “Sleep-Wake Evalua-
tion from Whole-Night Non-Contact Audio Recordings of
Breathing Sounds,” PloS one, vol. 10, p. e0117382, 2015] it
was showed that binary decision of sleep and wake phases
can be reliably determined using only breathing sound
analysis, showing matched and even superior performances
compared to actigraphy-based technologies.

[0009] However, there is still a need to provide an effi-
cient, cost effective, comfortable, audio based method and
means for determination of sleep parameters (e.g. sleep
stages). It is therefore an object of the present invention to
provide a method and means for analyzing audio-based
features to determinate sleep parameters.

[0010] It is a further object of the present invention to
provide a method and means using signal-processing to
determinate sleep stages.

[0011] It is a further object of the present invention to
provide a method and means using signal-processing to
determinate between apnea hypopnea and normal breathing.
[0012] Other objects and advantages of the present inven-
tion will become apparent as the description proceeds.

SUMMARY OF THE INVENTION

[0013] The present invention relates to estimating sleep
quality parameters according to an audio signal of a subject
during a sleep duration. The audio signal is processed to
obtain the sleep quality parameters. The audio signal is
preferably pre-processed to filter out noises. Preferably, a
breathing detection may be applied to the signal. The signal
is segmented into segments (epochs). Several types of
feature parameters may be extracted from each segment by
being derived from the segment signal. Several calculations
of various signal characteristics may be made to extract the
feature parameters.

[0014] The feature parameters extracted are inputted into
a computing system (e.g. machine learning) which applies a
preformed model/function on them to obtain scores (esti-
mated sleep quality parameter) or probability scores of the
estimated sleep quality parameters.

[0015] According to one embodiment, a whole sleep dura-
tion pattern estimation model is applied to the probabilities
obtained providing a better “real” result. Then the final sleep
quality parameters are extracted for each segment. The
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whole sleep duration pattern estimation model and the
computing system preformed model/function may be gen-
erated by training them with a plurality of measurements
along with corresponding true result PSG scores.

[0016] The present invention relates to a method for
determining sleep quality parameters according to audio
analyses, comprising:

[0017] obtaining an audio recorded signal comprising
sleep sounds of a subject;

[0018] segmenting the signal into epochs;

[0019] generating a feature vector for each epoch,
wherein each of said feature vectors comprises one or
more feature parameters that are associated with a
particular characteristic of the signal and that are cal-
culated according to the epoch signal or according to a
signal generated from the epoch signal;

[0020] inputting the generated feature vectors into a
machine learning classifier and applying a preformed
classifying model on the feature vectors that outputs a
probabilities vector for each epoch, wherein each of the
probabilities vectors comprises the probabilities of the
epoch being each of the sleep quality parameters;

[0021] inputting the probabilities vectors for each epoch
into a machine learning time series model and applying
a preformed sleep quality time series pattern function
on said probabilities vectors that outputs an enhanced
probabilities vector for each epoch;

[0022] determining a final sleep quality parameter for
each epoch by calculating the most probable sleep
quality parameters sequence.

[0023] Preferably, the method further comprises carrying
out a pre-processing stage comprising noise reduction of the
signal.

[0024] Preferably, the method further comprises carrying
out a breathing detection stage comprising categorizing
portions of the signal as breathing and other portions of the
signal as non-breathing.

[0025] Preferably, the one or more feature parameters are
associated with a characteristic selected from the group
consisting of breathing sound content, body movements,
non-respiratory sounds and breathing pattern periodicity.
[0026] Preferably, the one or more feature parameters
comprise at least two feature parameters associated with at
least two of the characteristics or comprise at least three
feature parameters associated with at least three of the
characteristics or comprise at least four feature parameters
associated with at least four of the characteristics.

[0027] Preferably, the one or more feature parameters are
all associated with one of the characteristics.

[0028] Preferably, the one characteristic is breathing
sound content.

[0029] Preferably, the one characteristic is body move-
ments.

[0030] Preferably, the one characteristic is non-respiratory
sounds.

[0031] Preferably, the one characteristic is breathing pat-

tern periodicity.

[0032] Preferably, the method comprises wherein the fea-
ture parameters associated with the breathing sound content
characteristic are selected from the group consisting of
Respiratory mean SNR feature, Respiratory Frequency cen-
troid, ADmean25, SuperSnore, and XcorrPeak;

[0033] or wherein the feature parameters associated with
the body movements characteristic are selected from the
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group consisting of Body movement percentage feature and
Body movement likelihood feature;
[0034] or wherein the feature parameters associated with
the non-respiratory sounds characteristic are selected from
the group consisting of Non-breathing percentage feature,
Non-breathing 90% SNR feature and Non-breathing fre-
quency centroid feature;
[0035] or wherein the feature parameters associated with
the breathing pattern periodicity characteristic are selected
from the group consisting of Respiratory cycle duty feature,
respiratory cycle period feature, respiratory cycle intensity
feature and respiratory cycle consistency feature.
[0036] Preferably, the one or more feature parameters are
each selected from the group consisting of respiratory cycle
duty feature, respiratory cycle period feature, respiratory
cycle intensity feature, respiratory cycle consistency feature,
non-breathing percentage feature, respiratory mean SNR
feature, respiratory frequency centroid feature, non-breath-
ing 90% SNR feature, non-breathing frequency centroid
feature, ADmean25, SuperSnore and XcorrPeak.
[0037] Preferably, the method further comprises an initial
stage of generating the preformed classifying model com-
prising:

[0038] obtaining audio recorded signals comprising

sleep sounds of a plurality of subjects;

[0039] segmenting the signals into corresponding
epochs;
[0040] generating a feature vector for each epoch,

wherein each of said feature vectors comprises one or
more feature parameters that are associated with a
particular characteristic of the signal and that are cal-
culated according to the epoch signal or according to a
signal generated from the epoch signal;

[0041] inputting the generated feature vectors of each
subject into a machine learning classifier along with
corresponding true result annotated sleeping scores;

[0042] generating the preformed classifying model
according to machine learning.

[0043] Preferably, the preformed sleep quality time series
pattern function is generated according to the following
steps:

[0044] inputting into a machine learning model a plurality
of true result hypnograms divided into epochs, wherein each
hypnogram comprises a sleep quality parameters result for
each of its epochs;

[0045] applying machine learning on said plurality of true
result hypnograms taking into account the epoch time
sequences, and the sleep quality parameters at each epoch
time sequence.

[0046] Preferably, the sleep quality parameters are macro
sleep stages selected from the group consisting of WAKE,
REM and NREM.

[0047] Preferably, calculating the most probable sleep
quality parameters sequence is carried out by using the
Viterbi algorithm.

[0048] Preferably, the method further comprises an initial
step of recording the audio signal.

[0049] Preferably, the sleep quality parameters are sleep-
disordered breathing parameters selected from the group
consisting of apnea, hypopnea and normal breathing.
[0050] The present invention relates to a system for deter-
mining sleep quality parameters according to audio analy-
ses, comprising:
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[0051] a processor;

[0052] a memory coupled to the processor and configured
to store program instructions executable by the processor to
implement the method for determining sleep quality param-
eters according to audio analyses, comprising:

[0053] obtaining an audio recorded signal comprising
sleep sounds of a subject;

[0054] segmenting the signal into epochs;

[0055] generating a feature vector for each epoch,
wherein each of said feature vectors comprises one or
more feature parameters that are associated with a
particular characteristic of the signal and that are cal-
culated according to the epoch signal or according to a
signal generated from the epoch signal;

[0056] inputting the generated feature vectors into a
machine learning classifier and applying a preformed
classifying model on the feature vectors that outputs a
probabilities vector for each epoch, wherein each of the
probabilities vectors comprises the probabilities of the
epoch being each of the sleep quality parameters;

[0057] inputting the probabilities vectors for each epoch
into a machine learning time series model and applying
a preformed sleep quality time series pattern function
on said probabilities vectors that outputs an enhanced
probabilities vector for each epoch;

[0058] determining a final sleep quality parameter for
each epoch by calculating the most probable sleep
quality parameters sequence.

[0059] The present invention relates to a method for
determining sleep quality parameters according to audio
analyses, comprising:

[0060] obtaining an audio recorded signal comprising
sleep sounds of a subject;

[0061] segmenting the signal into epochs;

[0062] generating a feature vector for each epoch,
wherein each of said feature vectors comprises one or
more feature parameters that are associated with a
particular characteristic of the signal and that are cal-
culated according to the epoch signal or according to a
signal generated from the epoch signal;

[0063] inputting the generated feature vectors into a
machine learning classifier and applying a preformed
classifying model on the feature vectors that outputs a
probabilities vector for each epoch, wherein each of the
probabilities vectors comprises the probabilities of the
epoch being each of the sleep quality parameters;

[0064] determining a final sleep quality parameter for
each epoch;

[0065] wherein the one or more feature parameters are
associated with a characteristic selected from the group
consisting of body movements and non-respiratory sounds.
[0066] In another embodiment—all the feature parameters
are associated with body movements. In another embodi-
ment - all the feature parameters are associated with non-
respiratory sounds.

[0067] Preferably, the method further comprises:

[0068] inputting the probabilities vectors for each epoch
into a machine learning time series model and applying
a preformed sleep quality time series pattern function
on said probabilities vectors that outputs an enhanced
probabilities vector for each epoch;

[0069] wherein determining the final sleep quality param-
eter for each epoch by calculating the most probable sleep
quality parameters sequence.
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[0070] The present invention relates to a system for deter-
mining sleep quality parameters according to audio analy-
ses, comprising:

[0071] a processor;

[0072] a memory coupled to the processor and configured
to store program instructions executable by the processor to
implement the method for determining sleep quality param-
eters according to audio analyses, comprising:

[0073] obtaining an audio recorded signal comprising
sleep sounds of a subject;

[0074] segmenting the signal into epochs;

[0075] generating a feature vector for each epoch,
wherein each of said feature vectors comprises one or
more feature parameters that are associated with a
particular characteristic of the signal and that are cal-
culated according to the epoch signal or according to a
signal generated from the epoch signal;

[0076] inputting the generated feature vectors into a
machine learning classifier and applying a preformed
classifying model on the feature vectors that outputs a
probabilities vector for each epoch, wherein each of the
probabilities vectors comprises the probabilities of the
epoch being each of the sleep quality parameters;

[0077] determining a final sleep quality parameter for
each epoch;

[0078] wherein the one or more feature parameters are
associated with a characteristic selected from the group
consisting of body movements and non-respiratory sounds.
[0079] Optionally, the breathing detection comprises iden-
tifying inhale and exhale episodes and their respective sound
properties.

BRIEF DESCRIPTION OF THE DRAWINGS:

[0080] The present invention is illustrated by way of
example in the accompanying drawings, in which similar
references consistently indicate similar elements and in
which:

[0081] FIG. 1 illustrates an embodiment of the method
stages of the present invention.

[0082] FIG. 2A illustrates the relative effect of each
parameter on a sleep stage according to an embodiment of
the present invention.

[0083] FIG. 2B shows 30 sec of Raw audio signal ampli-
tude according to an embodiment of the present invention.
[0084] FIG. 2C shows the enhanced audio signal follow-
ing noise suppression according to an embodiment of the
present invention.

[0085] FIG. 2D shows a spectrogram of the signal in FIG.
2C.
[0086] FIG. 2E shows the detection of inhale, exhale and

non-respiratory sound expressed as a likelihood score
according to an embodiment of the present invention.
[0087] FIG. 2F shows a periodicity measurement calcu-
lated as autocorrelation function of the detected breathing
curves in FIG. 2E.

[0088] FIG. 3A shows a feed-forward neural network
configuration according to an embodiment of the present
invention.

[0089] FIG. 3B shows a diagram according to an embodi-
ment of the present invention.

[0090] FIG. 3C shows an example of the probability of
each MSS during the night according to an embodiment of
the present invention.
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[0091] FIG. 4 shows the Epoch detection performance
according to an embodiment of the present invention.
[0092] FIG. 5 presents a typical example of MSS estima-
tion for a subject according to an embodiment of the present
invention.

[0093] FIGS. 6A-6D show examples comparing macro
sleep stages estimation between PSG and SSA (sleep sound
analysis) in different cases.

[0094] FIG. 7 shows examples of three different audio
segments.

[0095] FIG. 8 shows an example of the Supersnor distri-
bution.

[0096] FIG. 9 shows an example of dutyCycle apnea,

hypopnea and normal breathing events.
[0097] FIG. 10 shows an example of a 3-dimensional
representation of one subset of three features.

DETAILED DESCRIPTION OF THE
INVENTION:

[0098] The present invention relates to evaluating sleep
stages according to audio analyses due to the differences in
sound properties within each MSS enabling separation
between them. Some properties differences are respiratory-
related sounds due to alternation of upper airways patency
during each MSS, and some involve sounds of body move-
ments in bed.

[0099] The present invention is based on recording sound
of a user patient in a non-contact manner and based on
analysis of acoustic features extracted from the audio signals
recorded.

[0100] The present invention comprises a technology of
whole night audio recordings. The present invention system
comprises a recorder device preferably with a microphone
wherein the microphone is typically placed in proximity to
a sleeping person (optionally, in a bedroom of his own
house) for a full sleep sound recording. The microphone is
configured to register sounds made by the person during
sleep and sounds that are not made by the person that reache
the microphone. Sounds that are made by the person com-
prise for example, snoring sounds, breathing, coughing and
voice sounds, and sounds that are produced by motion of the
person, such as bed creaking and blanket rustling sounds.
Sounds that are not made by the person may comprise street
sounds and sounds originating in other rooms of the person’s
house that reach the bedroom and sounds made by appli-
ances, such as a whirring sound made by an overhead fan in
the bedroom. Sounds that are registered by the microphone
that are not respiratory sounds (that are not snoring and
breathing sounds) are referred to as background sounds.
Various recorders may be used. An example of a digital
audio recorder device is model EDIROL R-4 (Roland, 2-7
Kandasuda-cho, Chiyoda-ku, Tokyo 101-0041, Japan). An
example of a microphone is ambient microphone RODE
NTG-1 (107 Carnarvon St, Silverwater, NSW, 2128 Austra-
lia).

[0101] The microphone (and recorder) transmits the
sounds that it registers to a computer system. The computer
system comprises a processor configured to processes the
sleep sound signals to identify breathing sound durations
therein and classify the sounds (e.g. breathing sound dura-
tions) as REM, NREM and WAKE periods. The computer
system comprises a memory in which it stores the sleep
sound signals that the computer system receives from the
microphone. The computer system (e.g. by use of the

Mar. 26, 2020

processor) is configured to carry out computer executable
instruction sets relating to at least one operation selected
from pre-processing, noise reduction, breathing/ non-breath-
ing detection, segmentation, feature extraction, model esti-
mation, data comparison to a preformed model, carrying out
machine learning tasks (e.g. classification), as all will be
explained in detail herein.

[0102] The computer system may comprise a PC, a smart
phone, a laptop, and/or a work book that stores and executes
the instruction sets defined herein. However, the computer
system is not limited to being housed in a single computer,
or a computer located in a same room with the sleeping
person. Computer system may be a distributed system
having components and executable instruction sets located
in different servers, and may be partially or completely
based on access to servers via the internet, that is partially
or completely “cloud based”.

[0103] An audio signal is a representation of sound, typi-
cally as an electrical voltage. Audio signals may be charac-
terized by parameters such as their bandwidth, power level
in decibels (dB) and voltage level. A preferred audio signal
suitable for breathing analysis is a signal powerful enough
so that most of the breathing sound-events characteristics are
included and preserved.

[0104] Since the acquisition of the audio signal through a
microphone (and recorder) is analogue, its digitization is
necessary to perform computational processing. The present
invention method may comprise recording an individual
user during a sleep time (typically a nocturnal sleep time) to
obtain sleep sound signals.

[0105] The present invention method comprises obtaining
a recorded audio signal 10 of a subject during his time of
sleep (as can be shown in FIG. 1). The method comprises a
pre-processing stage 11 (of the audio signal) comprising a
signal digitization. The audio signals are recorded at a
sampling frequency preferably of 16-96 kHz, at preferably
8-32 bits per sample, PCM and stored in the computer.
[0106] Typical recordings of the present invention are of
long audio signals (e.g. 7-9 hours) aimed to acquire full
night sleep recordings. The audio files generated may be
large files. Processing and analyzing such large files would
require very high computational power and may result in
very long computation time. Hence, optionally, as a pre-
processing act, the signals may be down sampled, creating
more convenient and manageable files at the cost of the loss
of information in the high frequencies (e.g. >8kHz).
[0107] The pre-processing stage may further comprise a
signal enhancement (noise reduction). This may comprise
removing background sounds from a received audio signal,
e.g. removing noises that are not respiratory sounds (snoring
and breathing sounds) or body movements.

[0108] The noise reduction may be performed by a variety
of methods. According to a preferred embodiment the raw
whole-night audio signal is enhanced (signal-to-noise man-
ner) by an adaptive noise reduction algorithm based on a
spectral subtraction approach (e.g. E. Dafna, A. Tarasiuk,
and Y. Zigel, “Automatic Detection of Whole Night Snoring
Events Using Non-Contact Microphone,” PLoS One, vol. 8,
p. 84139, 2013). This step is important since it reduces the
background noise, which is subject-independent, and
emphasizes the transient events that were recorded during
sleep such as quiet breaths and body movements.

[0109] The present invention method may further com-
prise a breathing/non-breathing detection stage 12 catego-
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rizing portions of the signal as breathing and other portions
of the signal as non-breathing. A breathing detection system
(that may be used with the present invention) was developed
that is capable of detecting very low energy audio events and
distinguishing between breathing and non-breathing epi-
sodes [E. Dafna, A. Tarasiuk, and Y. Zigel, “Automatic
Detection of Whole Night Snorving Events Using Non-Con-
tact Microphone,” PLoS One, vol. 8, p. e84139, 2013, and
T. Rosenwein, E. Dafna, A. Tarasiuk, and Y. Zigel, “Detec-
tion of breathing sounds during sleep using non-contact
audio recordings,” Conf Proc IEEE Eng Med Biol Soc.,
2014]. Non-breathing events may be categorized into three
categories: 1) vocally self-generated sounds such as talking,
coughing, moaning, and mumbling; 2) body movement
sounds such as linen, pillow, and clothes rubbing and
twitching; and 3) third party sounds such as door slams, cars,
dogs, TV, etc. The output of the detector is the exact time
location of each audio event captured. As an example, if
there is a movement noise (above a certain threshold) the
probability of determination of a breathing noise decreases.
The sensitivity of capturing quiet audio events may be as
low as 20 dB. The preferable sensitivity is above 20dB
(sound pressure level-SPL), meaning higher than Yo of the
background noise level in a standard bedroom.
[0110] The present invention further comprises a segmen-
tation stage (typically carried out once the whole night audio
signal is enhanced). The signal is divided into intervals
(epochs) across the night. Most preferably the epochs are of
30 seconds, yet any interval of capturing several breathing
cycles is suitable, e.g. 8 sec to 1 min.
[0111] The present invention method further comprises a
feature extraction stage 13. From each epoch, several fea-
tures may be extracted designed to discriminate between the
three classes of MSS: Wake, REM, and NREM. Each of the
features extracted are calculated from the epoch signal (or a
signal generated from the epoch signal such as a breathing
pattern signal generated by a breathing detector). Several
features may be extracted. The features may be categorized
into groups, wherein each group is associated with a par-
ticular characteristic of the signal.
[0112] Alterations in MSS are associated with changes of
physiological parameters relating to characteristics such as:
[0113] breathing sound content (typically affected by
the upper airway resistance during sleep causing higher
respiratory sounds);
[0114] body movements;
[0115] non-respiratory sounds such as coughing, itch-
ing, murmurs etc.;
[0116] breathing pattern periodicity.
[0117] All these characteristics are associated with recog-
nizable sounds that could be detected and analyzed. FIGS.
2A-2E show examples of the effect of these characteristics
on the probability of being in a WAKE, REM or NREM
stage. FIG. 2A shows the relative effect of each parameter on
a sleep stage (black rectangle on the location of the triangle
height increasing from left to right, marking the relative
effect). For a weak effect the black rectangle would be on the
left (low) side of the triangle; for a strong effect the black
rectangle would be on the right (high) side of the triangle.
For example, body movement is absent in REM, high during
wake and lower during NREM.
[0118] FIG. 2B shows 30 sec (x axis) of Raw audio signal
amplitude (y axis) (R. sig in the figure being raw audio
signal).
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[0119] FIG. 2C shows the enhanced audio signal (corre-
sponding to the signal in FIG. 2B) following noise suppres-
sion (E. sig in the figure being enhanced audio signal).
[0120] FIG. 2D shows a spectrogram of the signal in FIG.
2C. Brighter colors represent higher sound intensity. The X
axis is time in seconds and the Y axis is frequencies (in
KHz).

[0121] FIG. 2E shows the detection of inhale (upper graph
of the three), exhale (middle graph) and non-respiratory
sound (bottom graph) expressed as a likelihood score.
Higher values (upright) indicate higher likelihood score
(“Eve. Detection” in the figure being event detection).
[0122] FIG. 2F shows a periodicity measurement calcu-
lated as autocorrelation function of the detected breathing
curves in FIG. 2E. The periodic pattern is noticeable in
NREM, decreased in REM and almost absent in WAKE.
[0123] FIGS. 2B-2F show a single representative epoch
(30 sec) during wake, REM and NREM, from a 53 year old
male, having a BMI of 27 and an AHI of 16.

[0124] The breathing characteristics features (e.g. the fea-
tures associated with the breathing sound content character-
istic and the features associated with the breathing pattern
periodicity characteristic) are obtained via an analysis of the
breathing pattern of a subject. The breathing pattern of a
subject can be obtained e.g. by a breathing detector (breath-
ing detection system) as described hereinabove to effectively
detect the events of interests. For this, the epoch signals that
are used for calculations are the “breathing event” detected
signals. The breathing-related features may be extracted
from the breathing pattern signal (generated from the breath-
ing detector) of each epoch.

[0125] Breathing Pattern Periodicity Features:

[0126] The following features are examples of features
associated with the breathing cycle (and are extracted by
using the breathing detector). A breathing likelihood func-
tion (B[n]) for each epoch, is described herein in relation to
the following functions to better understand the present
invention. This breathing likelihood function ranges from 0
to 1 (low to high likelihood), presenting the likelihood of a
breathing event to occur in a given time index (n) within the
epoch (a total of N time indexes in the epoch).

[0127] 1) Respiratory cycle duty feature—this feature
measures the time proportion of breathing effort in an epoch
relative to the respiratory cycle duration of the epoch. An
example of its calculation is:

1
duty_cycle= ﬁBool(B[n] > 0.5),

where, Bool is the boolean operator of true = 1, and false = 0.

[0128] 2) Respiratory cycle period feature—this feature
measures the average respiratory cycle duration based on
autocorrelation approach. An example of its calculation
“Period” is:

Period = argmax(R[k])
k

ke[2,6)sec

1 = _ _
R[K] = mz (Bln] = BYx (B[n + k] = B)
n=1
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-continued

[0129] Kk is the “lag” interval in sec (sample). The duration
between 2 and 6 seconds is within a reasonable range for the
breathing of a subject.

[0130] 3) Respiratory cycle intensity feature—this feature
is determined by the value of the autocorrelation first peak.
An example of its calculation is:

Intensity=max ([k]) ke, 61sec

[0131] 4) Respiratory cycle consistency feature—mea-
sures the homogeneity of the respiratory cycles. This relates
to how much the cycle applies to each breath, and not only
an average of the whole epoch. An example of its calculation
is:

Consistency=std (peaks(R))

[0132]

[0133] The following features are examples of features
associated with the breathing sound content (typically
affected by the upper airway resistance during sleep causing
higher respiratory sounds). Items B[n], N and n are as
described hereinabove. These breathing sound content fea-
tures are extracted by using the breathing detector.

[0134] 1) Respiratory mean SNR feature—measures the
average signal-to-noise ratio (dB scale) of all respiratory
events detection. An example of its calculation is:

Breathing Sound Content Features:

M SNR—lNSNRB 0.5
ean_ _ﬁ; (Bln] > 0.5),

where, SNR is the temporal ratio between breathing and

background noise signal

[0135] 2) Respiratory Frequency centroid—is the average
frequency centroid of all breathing detected (similar to
center of mass function). An example of its calculation is:

Sampeling rate

1 ZN i
Centroid= — f
N
n=1 F

=0

FXX(f, Bln] > 0.5)),

where, X(f, n) is the temporal (n) discrete Fourier transform

(DFT), f is frequencyin kHz

[0136]

[0137] During normal breathing segments, time signal
amplitude varies significantly, in comparison to hypopnea
events and apnea events, and its differentiation provides high
values.

3) ADmean25
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SortBreathSNR = sort(SNR(B[nz] > 0.5))

N
Len= Z Bool(B[n] > 0.5)
=0

1 Len
ADmeanys = ———— SoriBreathSNR(n) —
LV x0.75] i=[x0.75]
1 [Nx0.25]
m SortBreathSNR(n)
[0138] 4) SuperSnore

[0139] At the end of an apnea or a hypopnea event there
might be a loud breath or snore that is supposed to com-
pensate for the lack of oxygen caused by the cessation of
breathing. This feature compares the maximal short-term
energy in the 5-second window after the event terminates,
with the maximal short-term energy during the event itself.
FIG. 8 shows an example of the Supersnore distribution.

max(SNR(B[n] > 0.5) lneregion1)
max(SNR(B[n] > 0.5) |neregion2)”

SuperSnore =

Regionl,
is the suspected 5 seconds containing breathing events
Region2,
is the suspected 5 seconds before resuming breathing
Higher values will indicate a ceassesions of breathing

presumably by apnea.

[0140] 5) XcorrPeak

[0141] The autocorrelation function of the short-term
energy sequence among hypopnea and normal breath events
tends to resemble a sine wave. Utilizing this tendency,
XcorrPeaks is computed using the correlation coeflicient
achieved from applying a 0.3 hertz sine wave curve fitting
to the mentioned autocorrelation function.

1 _ .
R = 57— D, (Bln) = B)x (Bln + k1 - B),
n=1

SyntBreathlk] = cos[2x X 0.3 x k x0.05]

2

N
[Z (R[k] = R)(SyniBrearhk] — SyniBreath)
=l

XcorrPeaks =

N
(RIK] =R x Z (SyntBreathlk] — :S'ymBreath)2

=1 k=1

[0142] Body Movement Features:

[0143] The following features are examples of features
associated with the subject’s body movement. These fea-
tures are extracted from the epoch signal without the breath-
ing detection stage. Body movement is usually associated
with wakefulness, i.e., the same assumption used in actig-
raphy devices. Moreover, REM is characterized by a para-
lyzed-limbs phenomenon, which prevents the patient from
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harming himself during dreaming; therefore, REM epochs
will usually contain fewer body movements.

[0144]

[0145] This feature is calculated as the ratio between all
body movement detected durations combined relative to the
epoch duration (e.g. 30 sec epoch duration). An example of
its calculation is:

1) Body Movement Percentage Feature

¥
percentage = N nZ:; Bool(BodyMove[n] > 0.5),

where, Bool is the boolean operator of true=1,and false =0.

[0146]

[0147] This feature is calculated as the average of all
detected body movement likelihood score. An example of its
calculation is:

2) Body Movement Likelihood Feature

N
Z BodyMove[n] x Bool( BodyMove[r] > 0.5)
BM._ likelihood= 2>

N
Y, Bool(BodyMove[n] > 0.5)
n=1

where, Bool is the boolean operator of true=1,and false =0.

[0148]

[0149] The following features are examples of features
associated with the epoch portions where non-breathing is
detected. These features may be extracted from the epoch
signal by using the breathing detector (which can also
function as a “non-breathing detector”).

[0150]

[0151] This feature is calculated as the ratio between all
non-breathing detected durations combined relative to the
epoch duration (e.g. 30 sec epoch duration). An example of
its calculation is:

Non-Respiratory Sounds Features:

1) Non-Breathing Percentage Feature

t —1NBZN‘[]>05
percenage_ﬁ; ool(Noise[n .5),

where, Bool is the boolean operator of true=1,and false =0.

“Noise[r]” being likelihood function of non-breathing

[0152] 2) Non-Breathing 90% SNR Feature

[0153] This feature represents the SNR value of the 10%
upper percentile of all non-breathing detected. The noise
events (not background noises) are detected using the
breathing detector mentioned above, as the non-breathing
classification.

[0154]

[0155] This feature is calculated in a similar manner as for
the breathing frequency centroid (mutatis mutandis). An
example of its calculation is:

3) Non-Breathing Frequency Centroid Feature
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Centroid = %Z f fxX(f, B[r]>0.5)|,

n=1 =0

where,

X(f,n)is the temporal (n) discrete Fourier transform (DFT),

f is frequency in kHz.

[0156] For each of the epochs a specific feature vector
having a number of dimensions as the number of extracted
features (each feature representing one of the dimensions) is
generated. Each feature vector comprises all of the extracted
features (e.g. calculated from the epoch signal) of its par-
ticular epoch. These features assist to distinguish Wake,
REM and NREM, as will be explained herein.

[0157] The present invention method comprises a classi-
fication step 14. The feature vector (of each epoch) is
inputted into a machine learning classifier. The machine
learning classifier applies functions on the inputs according
to a preformed model (that was previously generated, as will
be explained hereinafter), and then outputs a decision deter-
mination for each epoch—Wake, REM or NREM.

[0158] According to an embodiment of the present inven-
tion the classifier calculates and outputs (according to the
preformed model) a 3x1 state probabilities vector providing
the probability of each epoch being WAKE, being REM and
being NREM (and not only concluding the final determined
MSS which is the one with the highest probability).

[0159] The preformed model is created by using a plural-
ity of subjects that over go an all-night testing where
different measurements are applied on them. First, a training
phase is commenced using a supervised learning approach,
by training the classifiers using PSG (typically manually)
annotated sleeping scores. The measurements and calcula-
tion steps may comprise:

[0160] 1) Carrying out a microphone recording, pre-pro-
cessing/noise reduction, breathing/non-breathing detection
and feature extraction as explained herein. The features for
each epoch are inputted into the classifier.

[0161] 2) Applying PSG measurements and dividing the
measurements into epochs corresponding to the recording
epochs (i.e. each epoch duration on the recording timeline is
equal to its corresponding PSG epoch, both on the same
timeline), wherein for each epoch a determination is made
based on the PSG measurements that the epoch represents
Wake, REM or NREM. Typically, the determination of each
PSG epoch is carried out by a certified technician following
standard scoring rules (e.g. C. Iber, S. Ancoli-Israel, C. A.
L., and S. Quan, The AASM Manual for the Scoring of Sleep
and Associated Events: Rules, Terminology, and Technical
Specifications, led. Westchester, 1ll.: The American Acad-
emy of Sleep Medicine, 2007.).

[0162] Then, the feature vector for each recording signal
epoch is inputted into the classifier along with the corre-
sponding “true results” determination, i.e. the corresponding
PSG epoch determination. This is carried out for all of the
vectors and corresponding PSG epoch determinations of all
of the plurality of subjects. The machine learning classifier
thus creates a model that can classify a similar vector with
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the same number of dimensions (representing a single
epoch) inputted thereto—classifying the vector as Wake,
REM or NREM.

[0163] Then, a validation phase is applied with a plurality
of subjects having recording signals and corresponding PSG
determination results. The feature extractions of the record-
ing signal epochs (after pre-processing/noise reduction,
breathing/non-breathing detection, etc., as explained herein)
are inputted into the classifier and the output thereafter to the
“true result enhancing feature”—the time series function
model (as will be explained hereinafter) to produce the final
output determinations. These output determinations are
compared with the corresponding PSG determination results
and thus a success percentage is extracted.

[0164] More specifically, for each subject from the vali-
dation dataset a comparison is carried out epoch-by-epoch
between the manually annotated PSG sleep scoring against
the automated audio-based analysis (ABA) sleep scoring
(the final output of the second machine learning model).
Two agreement measurements were calculated, 1) simple
accuracy, i.e, the number of agreed (match) epochs divided
by the overall epochs, e.g. according to Cohen’s kappa (J.
Cohen, “Weighted kappa: Nominal scale agreement provi-
sion for scaled disagreement or partial credit,” Psychologi-
cal bulletin, vol. 70, p. 213, 1968). In addition, we compared
the sleep quality parameters calculated from PSG and from
the audio-based-analysis (ABA) approach using mean dif-
ference (subtraction), mean error (absolute difference), and
two-tail paired t-test, in order to examine the validity of the
ABA on clinical decisions.

[0165] In order to train the model, for each epoch the PSG
annotation (given by the technologist) was matched with the
determined corresponding acoustic features. Then, based on
the statistical information (presented in the features) asso-
ciated within each stage, the model converges into optimized
state which discriminate between the stages. Once the model
was trained (model parameters/coefficients), a new epoch is
processed to calculate the inputted features. These inputted
features (e.g. being numbers) are fed into the classifier and
a 3D score is calculated.

[0166] According to a preferred embodiment the classifier
is an artificial neural network (ANN) classifier with inputs
(the extracted features) that projects the decision into a 3D
score (3 states). Each dimension in the output represents a
likelihood score for a specific class (Wake/REM/NREM). A
preferred example includes a ‘feed-forward’ neural network
architecture with two hidden layers composed of 50 and 10
hyperbolic tangent sigmoid neurons, respectively, followed
by a ‘softmax’ transfer function for the output layer. FIG. 3A
shows the feed-forward neural network configuration. The
output of the ANN classifier, p(x), can be written as:

PO (Wof (W xtb ) +b5)+b3)

where p is a 3-class score; X is the input vector, i.e., feature
set; f, is the i” transfer function, with its corresponding
weights W,; and bias values b,. An example of an ANN setup
can be found in Y. Anzai, Pattern Recognition & Machine
Learning: Elsevier, 2012.

[0167] Once each epoch classification is determined (rep-
resented by either one of three scores—wake, REM, and
NREM), a preformed time series (function) model is applied
15 to each of the determined results (the MSS probabilities
vector for each epoch) that enhances the correctness of the
determined MSS or changes the determined MSS. This time
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series function model takes into account a whole-night MSS
pattern estimation and affects the final outcome accordingly.
The purpose of this model is to enhance correctness by
inserting additional knowledge (in relation to the time
series) that estimates a more realistic sleep pattern sequence.
The time series function model is preformed (previously
generated) by a machine learning model. An example of a
machine learning model used that may generate the time
series function model is a three-state time-dependent hidden
Markov model (HMM) (e.g. as used in Y. Anzai, Pattern
Recognition & Machine Learning: Elsevier, 2012). FIG. 3B
shows a diagram of one state capable of transitioning to
either one of the other states or remaining in the same state.
[0168] In this configuration, the transition probability
between each state varies along time, i.e., across the night.
For example, one would expect that at the beginning,
transitions will pull toward wakefulness, while in the middle
of the night toward REM and NREM. The probability for a
given epoch n to be classified into each of the three states can
be calculated using the following equation:

S 1= T XDy 15

where s, | is the 3x1 estimated state probabilities vector of
a given epoch n+1. T,, is a 3x3 preformed transition matrix
at a given epoch n, and p,,,, is the 3x1 state probabilities
vector of an epoch n+1 estimated by the first classifier (e.g.
ANN classifier), i.e., determined by the acoustic features.
Thus, each epoch after the calculation has a corresponding
estimated state probabilities vector indicating the probability
of each one of the 3 MSSs.

[0169] Three classes across N epochs yield 3N possible
state sequences. Each of the MSS may follow a previous
MSS (as shown in FIG. 3B). The most probable state
sequence is represented by the maximum probability—Pr
score. The present invention method comprises determining
the maximum Pr score by calculating the most probable
sequence. A Viterbi algorithm (e.g. as explained in Y. Anzai,
Pattern Recognition & Machine Learning: Elsevier, 2012)
may be applied to find the maximum Pr score efficiently, i.e,
the most likely sleep pattern sequence.

[0170] According to one embodiment, for a given states
sequence—(0, 0o, . . . , Oy) € {Wake, REM, NREM}, the
probability value may be calculated using the following
equation:

N

, 52 =072, ... ,SN=U'N)=1_[ ($n = o),
n=l

Pris; =0

[0171] Thus a final output is generated comprising the
final Macro Sleep Stages determined for each epoch. FIG.
3C shows an example of the probability of each MSS during
the night. It should be noted that the curves in the figure were
generated solely by state transition probabilities and regard-
less of the epoch’s score, hence presenting the global states
probability, a most probable sleeping pattern for humans.

[0172] The preformed time series model is previously
generated by inputting into a machine learning model a
plurality of hypnogram results. Each hypnogram comprise
an MSS result for each of its epochs (of a whole sleep
duration), all which are inputted into the machine learning
model. Thus a plurality of MSS results are provided for each
sequence epoch of the sleep durations, i.e. the machine
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learning model receives a plurality of MSS results for a first
sleep epoch, then for a second sleep epoch, etc. The machine
learning model generates a sleep pattern affecting function
(e.g. transition matrix) accordingly taking in to account the
sleep pattern. Thus a transition matrix for each epoch may be
generated, providing certain affecting weights for each
epoch of the epoch sequences.

[0173] An example of a machine learning model used is a
time-dependent hidden Markov model (HMM).

[0174] The output of the epoch final determinations are
extracted and generate a whole-night MSS hypnogram. Thus
a clinical sleep evaluation report can be generated. Accord-
ing to a specific embodiment of the present invention, seven
sleep parameters may be assessed. These sleep parameters
are used in a standard polysomnography test [AASM guide-
lines]. In order to evaluate sleep and its disorders, sleep
quality parameters such as the following may be determined
(by using the determined hypnogram):

[0175] 1) total sleep time (TST)—the overall duration of
sleep stages,
[0176] 2) sleep latency (SL)—the time span between lying

in bed and the start of sleeping,

[0177] 3) sleep efficiency (SE)—the ratio between TST
and total time in bed,

[0178] 4) wake-time after sleep onset (WASO)—the sum-
mation of all awakening episodes during sleep,

[0179] 5) awakening index (Awl)—the average number of
awakenings per hour of sleep,

[0180] 6) REM latency (RL)—the time span between
sleep onset and the first REM cycle, and

[0181] 7) REM percentage (RP)—the ratio between REM
duration and TST.

EXAMPLE 1

[0182] Audio signals of 35 patients referred to a sleep
laboratory were recorded and analyzed. An additional 178
subjects were used to train a probabilistic time-series model
for MSS staging across the night. The audio-based system
was validated on 20 out of the 35 subjects. System accuracy
for estimating (detecting) epoch-by-epoch wake/REM/
NREM states for a given subject is 74% (69% for wake, 54%
for REM, and 79% NREM). Mean error (absolute differ-
ence) was 36+34 min for detecting total sleep time, 17+21
min for sleep latency, 5+5% for sleep effliciency, and 7+5%
for REM percentage. These encouraging results indicate that
audio-based analysis can provide a simple and comfortable
alternative method for ambulatory evaluation of sleep and its
disorders.

[0183] Sleep data, from 213 patients (>18 years) who were
scheduled for routine PSG study at the sleep-wake disorder
unit at Soroka University Medical Center, was prospectively
acquired. Thirty-five of them were simultaneously recorded
with a digital audio recorder device (EDIROL R-4) and an
ambient microphone (RGDE NTG-1). The microphone was
attached to the ceiling and hung about one meter above the
subject’s head. Subjects’ characteristics are summarized in
Table 1. Audio signals were recorded at a sampling fre-
quency of 16 kHz, 16 bits per sample, PCM and stored with
the PSG sleep manual scoring by a certified technologist.
The raw audio signal was then processed off-line using the
present invention method, which is shown in FIG. 1.
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TABLE 1

Patient Characteristics.

Design Design Validation
Parameter (HMM) (ANN) (ANN + HMM)
# of Patients 178 15 20
Male/Female 108/70 10/5 13/7
Age 55«15 49 = 13 53 +14
(years) 19-87 25-66 23-70
BMI 326 296 35+5
(kg/m2) 20-58 23-45 25-45
AHI 21 =18 17 = 10 20 =13
(events/hr) 0-88 2-34 5-52
# of Epochs 866 = 55 920 = 62 870 = 75

560-987 782-1007 720-1025

BMI—Body mass index, AHI—Apnea and hypopnea index. Values are mean + SD, and
range min-max.

[0184] An overall accuracy of 95% was reported for
breathing detection and 98% for non-breathing detection;
sensitivity of capturing quiet audio events as low as 20dB
was reported. The signal was divided into 30s intervals
(epochs) across the night.

[0185] From each epoch, nine features were extracted
designed to discriminate between the three classes of MSS:
Wake, REM, and NREM. The applied the breathing detector
described herein was applied to effectively detect the events
of interests.

[0186] The extracted features were:

[0187] 1) Respiratory cycle duty feature;

[0188] 2) Respiratory cycle period feature;

[0189] 3) Respiratory cycle intensity feature;
[0190] 4) Respiratory cycle consistency feature;
[0191] 5) Non-breathing percentage feature;

[0192] 6) Respiratory mean SNR feature;

[0193] 7) Respiratory Frequency centroid feature;
[0194] 8) Non-breathing 90% SNR feature;

[0195] 9) Non-breathing frequency centroid feature.
[0196] An artificial neural network (ANN) classifier was

used for the MSS classification, having 9D inputs that
projects the decision into a 3D score (3 states). A ‘feed-
forward’ neural network architecture with two hidden layers
composed of 50 and 20 hyperbolic tangent sigmoid neurons,
respectively, followed by a ‘softmax’ transfer function for
the output layer, was used.

[0197] A three-state time-dependent hidden Markov
model (HMM) was used for the whole night pattern machine
learning model. A Viterbi algorithm was used to find the
maximum Pr score efficiently.

[0198] Training phase—The classifiers were trained using
manually annotated sleeping scores. The sleeping annota-
tions involve three MSS (Wake, REM, and NREM) across
the night determined by a sleep expert following the stan-
dard scoring rules. The ANN classifier training process was
conducted on the annotated sleep-scoring of 15 subjects as
shown Table 1.

[0199] For the time-series HMM, an estimation was made
for the state transition matrix (probabilities) for the MSS
patterns based on the annotated sleep scores of 178 subjects,
listed in Table 1. These transitions are time dependent and
were estimated for each state and for each time index
(epoch) across the night.

[0200] Validation phase—For the validation phase, an
estimation was made for the MSS patterns of 20 subjects,
and respectively compared to the manually annotated MSS
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(Shown in Table 1). The most probable MSS sequence for a
subject was estimated using the Viterbi algorithm.

[0201] System Performance Evaluation

[0202] For each subject from the validation dataset (Table
1), epoch-by-epoch was compared between the manually
annotated PSG sleep scoring against the automated audio-
based analysis (ABA) sleep scoring. Two agreement mea-
surements were calculated, simple accuracy and Cohen’s
kappa. Moreover, these parameters, calculated from PSG
and from the audio-based-analysis (ABA) approach, were
compared using mean difference (subtraction), mean error
(absolute difference), and two-tail paired t-test.

[0203] Results

[0204] This study was performed on the database summa-
rized in Table 1. For each subject, epoch-by-epoch MSS was
compared between ABA and the PSG annotated sleep
stages. The comparison was measured using simple agree-
ment and using Cohen’s kappa (shown in FIG. 4). FIG. 4
shows the Epoch detection performance. Upper panel—
Subject epochs accuracy. Lower panel—Subject’s epochs
Cohen’s kappa agreement. White bars represent epochs
agreements based on ANN classification alone, and black
bars represent the agreements after HMM procedure. The
contribution of the time-series model (HMM) was also
tested, presented as filled bars (FIG. 4). For the ANN model,
the accuracy was 0.63+0.10 and kappa of 0.32+0.12. After
applying the HMM, the performance was increased to
0.75+0.09 and 0.42+0.17. A confusion matrix is shown in
Table 2.

TABLE 2

Classifiers confusion matrix.

ANN FEstimation HMM Estimation

w R N w R N
PSG w 66% 15% 19% 69% 5% 26%
annotation R 8% 64% 28% 5% 54% 41%

N 12% 26% 62% 10% 11%  79%

W—Wake, R—REM sleep, and N—NREM sleep. A priori probability for states are 14%,
12%, and 74% for Wake, REM, and NREM, respectively.

[0205] FIG. 5 presents a typical example of MSS estima-
tion for a subject (ID #7 from FIG. 4). The upper panel
presents the three classes MSS scores (probabilities) esti-
mated by the ANN classifier (scores are summed to one).
Center panel presents the HMM’s most probable MSS
sequence. Lower panel presents the PSG annotation.
W-Wake, R-REM, N-NREM. Subject ID is #7 from FIG. 4:
Male, age=44, BMI=28, AHI=11. This example exhibits an
accuracy rate of 83% and kappa of 0.58.

[0206] Once MSS is estimated across the night, sleep
quality parameters can be calculated. Table 3 shows the
mean and SD values of the estimated sleep quality param-
eters for the validation study.

TABLE 3

Sleep Parameters For The Validation Dataset.

ABA-
Param. PSG ABA PSG Error P
TST 374 = 38 358 £48 -16 = 47 36 34 .26
(min) 274-426 295-435 -115-78 3-115
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TABLE 3-continued

Sleep Parameters For The Validation Dataset.

ABA-
Param. PSG ABA PSG Error P
SL 29 £ 28 33 £29 4 £27 17 £ 21 .70
(min) 1-108 1-92 -33-80 0-80
SE 925 91 £7 -1+7 5«5 .62
(%) 81-98 73-100 -20-14 0-20
WASO 30 £ 17 33 £29 3+28 20 £ 19 .69
(min) 9-66 0-114 -46-86 1-86
Awl 2.6 1.1 0.6 £0.3 -2.0x1.2 2012 .00
(#/hr) 0.6-5.7 0.0-1.2 -5.3--0.2 0.2-5.3
RL 185 £ 85 133 =63 -45 = 96 77 £71 .04
(min) 42-336 32-253 -271-83 2-271
RP 13£6 17 £ 8 4£8 75 .09
(%) 4-25 0-27 -9-20 0-20

TST—total sleep time, SL—sleep latency, SE—sleep efficiency, WASO—wake-time after
sleep onset, Awl—awakening index, RL—REM latency, RP—REM percentage. Values are
mean + SD and range min-max. ABA—audio-based analysis, PSG—the gold standard
polysomnography. Error defined as the absolute difference, and p represents the p-value of
two-tail, paired t-test comparison. These analyses were based on 20 subjects from the
validation dataset.

[0207] The demand for accessible sleep diagnosis and
simple/easy to use PSG alternative is high. The perfor-
mances of the present invention is very encouraging and
could serve as a screening tool for MSS estimation using a
simple single-channel, non-contact audio technology.
[0208] According to another aspect of the present inven-
tion, the sleep quality parameters relate to apnea, hypopnea
and normal breathing events. Sleep-disordered breathing
(SDB) is a group of common disorders that affect up to 20%
of the population. Its prevalence has substantially increased
over the past two decades: an increase of more than 14% in
the North-American adult population. The most prominent
disorder among this group is obstructive sleep apnea (OSA),
which is characterized by recurrent events of partial or
complete collapse of the upper airway during sleep (i.e.,
hypopnea and apnea). OSA can lead to excessive daytime
sleepiness, cardiovascular morbidity, and death. Severity of
OSA is measured by the apnea-hypopnea index (AHI),
which is the average number of apnea and hypopnea events
per hour of sleep.

[0209] While apnea is defined as a reduction of at least
90% in air flow for 10 seconds or more, hypopnea is
characterized by a reduction of at least 30% in airflow that
lasts 10 seconds or more, accompanied by 3% (or more)
oxygen desaturation. The definition of hypopnea has been
inconsistent since it was first termed and led to a significant
variability of OSA severity estimations in different studies.
[0210] Few studies have attempted to determine the exact
time location of apnea and hypopnea, and none of these
studies distinguished between the two by non-contact acous-
tic sounds (e.g. A. H. Khandoker, J. Gubbi, and M. Pala-
niswami, “Automated scoring of obstructive sleep apnea
and hypopnea events using short-term electrocardiogram
recordings,” Information Technology in Biomedicine, IEEE
Transactions on, vol. 13, pp. 1057-1067, 2009, and P.
Varady, T. Micsik, S. Benedek, and Z. Benyd, “4 novel
method for the detection of apnea and hypopnea events in
respiration signals,” Biomedical Engineering, IEEE Trans-
actions on, vol. 49, pp. 936-942, 2002).

[0211] The present invention according to this aspect
relates to a system and method for classification that can
categorize and differentiate between complete respiratory
obstruction sound (apnea), partial respiratory obstruction
sound (hypopnea), and normal breathing events. This aspect
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is also based on recording sound of a user patient in a
non-contact manner and based on analysis of acoustic fea-
tures extracted from the audio signals recorded. This aspect
according to the present invention is configured to calculate
a Apnea-Hypopnea Index (AHI).

[0212] It should be noted that this aspect of the present
invention is similar to the aspect of the MSS estimation
mutatis mutandis. The following items are different. While
in the MSS aspect the machine learning classifier is gener-
ated by using true result PSG annotated sleeping scores of
each epoch being WAKE, REM and NREM, this SDB aspect
of the present invention comprises alternatively using true
result PSG annotated sleeping scores of each epoch being
apnea, hypopnea and normal breathing. The whole machine
learning process (classifier), the probability vectors, enhanc-
ing time series pattern function, calculating the most prob-
able sleep quality parameters sequence, are all adapted
mutatis mutandis. Other steps (e.g. pre-processing, breath-
ing detection, feature extraction) are similar.

[0213] It should be noted that according to a specific
embodiment the following features are particularly used
with the SDB aspect: ADmean25, SuperSnore and Xcorr-
Peak.

[0214] FIG. 7 shows examples of three different audio
segments. Black dashed lines indicate events’ beginning and
ending.

[0215] A) Apnea’s amplitude in time (top left).

[0216] B) Apnea’s Frequency content in time (top right).
[0217] C) Hypopnea’s amplitude in time (middle left).
[0218] D) Hypopnea’s Frequency content in time (middle
right).

[0219] E) Normal Breath’s amplitude in time (bottom
left).

[0220] F) Normal Breath’s Frequency content in time

(bottom right).

EXAMPLE 2

[0221] FIGS. 6A-6D show examples comparing macro
sleep stages estimation between PSG and SSA (sleep sound
analysis) in different cases.

[0222] FIG. 6A) Healthy subject, apnea-hypopnea (A+H)
index<5 (events per hour);

[0223] FIG. 6B) Subject with long latency to rapid-eye-
movement (R) sleep of about 440 epochs;

[0224] FIG. 6C) Subject with moderate sleep apnea (A+H
index=18 events per hour), note that obstructive events
appear in both non-rapid-eye-movement (N), and in R sleep;
[0225] FIG. 6D) R-related sleep apnea (A+H=55 events
per hour in R, and 21 events per hour in N sleep).

[0226] In all cases very good agreement was found
between polysomnography (PSG) and sleeping sound analy-
sis (SSA) in estimating macro sleep stages (N, R, and
W—wake) and detection of A+H.

EXAMPLE 3

[0227] In the current study, the acoustic characteristics of
hypopnea in order to distinguish it from apnea was explored.
The method—finding audio-based features that can dis-
criminate between apnea, hypopnea and normal breathing
events. Whole night audio recordings were performed using
a non-contact microphone on 44 subjects, simultaneously
with the polysomnography study (PSG). Recordings were
segmented into 2015 apnea, hypopnea, and normal breath
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events and were divided to design and validation groups. A
classification system was built using a 3-class cubic-ker-
nelled support vector machine (SVM) classifier. Its input is
a 36-dimensional audio-based feature vector that was
extracted from each event. Three-class accuracy rate using
the hold-out method was 84.7%. A two-class model to
separate apneic events (apneas and hypopneas) from normal
breath exhibited accuracy rate of 94.7%. Thus it is possible
to detect apneas or hypopneas from whole night audio
signals. This provides more insight about a patient’s level of
upper airway obstruction during sleep. This approach may
be used for OSA severity screening and AHI estimation.
[0228] A classification system was proposed, aiming to
categorize complete respiratory obstruction sound (apnea),
partial respiratory obstruction sound (hypopnea), and nor-
mal breath events. The algorithm was designed and vali-
dated using the hold-out method. After the pre-processing
procedure, a feature vector was extracted from each of the
pre-segmented apnea, hypopnea, and normal breath events.
As can be seen in FIG. 7, the three different event types have
unique characteristics in both time and spectrum.

[0229] After passing a K-Best feature selection procedure,
the resulting feature vector fed a cubic-SVM classifier that
was designed to differentiate the three possible classes.
[0230] A. Experimental Setup

[0231] The database for this study includes 44 adult sub-
jects (>18 years old) who were recorded during routine PSG
study at the Sleep-Wake Disorders Unit, Soroka University
Medical Center. Simultaneously with the PSG study, the
subjects were recorded using a digital audio recording
device (EDIROL R-4 Pro) connected to a non-contact direc-
tional condenser microphone (RODE NTG-1) positioned
one meter above the subjects” head. Subjects’ characteristics
are presented in Table 4.

TABLE 4

DATABASE DIVISION

AHI BMI Age
No. of [events/hr] [kg/m?] [y1]
subjects (range) (range) (range)
Design 31 25.0 £ 19.1 319 44 342 =129
(1.8-79.2) (16.8-40.3) (29.0-79.0)
Validation 13 252 +21.1 33562 49.4 £ 123
(8.6-74.8) (25.8-46.8) (32.0-81.0)

The values are presented as mean + SD corresponding to the relevant units.

[0232] B. Segmentation

[0233] Whole-night recordings were analyzed epoch-by-
epoch (30-second epochs) by a sleep expert. Segmentation
was made into three different classes: apnea, hypopnea and
normal breath events. Study design: 1578 events (674
apneas, 422 hypopneas, and 482 normal breaths). Study
validation: 437 events (247 apneas, 58 hypopneas, and 132
normal breaths). Normal breath events were segmented in
epochs that did not include apnea or hypopnea events.
[0234] C. Pre-Processing

[0235] Recorded audio signals were down-sampled from
44.1 to 16 kilohertz and an adaptive noise reduction algo-
rithm, based on spectral subtraction, was applied.

[0236] D. Feature Extraction and Selection

[0237] For each apnea, hypopnea, and normal breath
event, a 36-dimension feature vector was extracted. The
feature vector includes features from both time and spectral
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domains, some of which are novel features developed in our
lab. Features’ capability of distinguishing the different
classes (one feature at a time) was examined according to the
meanAUC measure; a receiver operating characteristic
(ROC) curve was formed for each 2-class combination, and
area under the curve (AUC) was calculated. The meanAUC
measure is the mean of these three AUCs received for each
feature.

[0238] K-best feature selection process was applied over
the different features, where its criterion was the meanAUC
measure. K was selected so the best classification accuracy
result was received for the training set.

[0239] Special Features Description
[0240] EX-ADmean25
[0241] During normal breathing segments, time signal

amplitude varies significantly, in comparison to hypopnea
events and apnea events, and its differentiation provides high
values. This feature is computed as the mean of the higher
quartile of the differentiation’s absolute difference.

[0242] EX-SuperSnore

[0243] At the end of an apnea or a hypopnea event there
might be a loud breath or snore that is supposed to com-
pensate for the lack of oxygen caused by the cessation of
breathing. This feature compares the maximal short-term
energy (STE) in the 5-second window after the event ter-
minates, with the maximal short-term energy during the
event itself, and is computed as explained herein:

max  STE, (i)
i=l,... \Ng
EX-SuperSnore = —————

max  STE, (i)
i=l,... ,Ng

where N, resembles the number of time-frames in the
after- event 5-second window, and Ny resembles the
number of time-frames during the event. STE, and STE,
stand for the short —term energy sequences after the event

and during the event, respectively.

[0244] High values are expected for the apnea events,
whereas for normal breathing events the expected value is 1.
[0245] XcorrPeaksSTE

[0246] In the examination of 10-second time windows, the
autocorrelation function of the short-term energy sequence
among hypopnea and normal breath events tends to
resemble a sine wave. Utilizing this tendency, Xcorr-
PeaksSTE is computed using the coefficient of determina-
tion (R2) achieved from applying a 0.3 hertz sine wave
curve fitting to the mentioned autocorrelation function.
[0247] EX-FCMDmean25

[0248] Breaths consist of high-frequency content, as can
be seen in FIG. 7 (bottom right). Their existence in normal
breath events and hypopnea events should expand the range
of values of the frequency center of mass (FCM). Therefore,
the mean of the higher quartile of the frequency center of
mass time-derivative (FCMD) increases.

[0249] DutyCycle

[0250] Each of the three classes discussed should provide
a different distribution of the short-term energy values. This
feature uses K-means algorithm (K=2) in order to separate
higher energy content from lower energy content in the
resulting STE histogram, as demonstrated in FIG. 9. The
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higher energy content and the lower energy content refer to
breaths and background noise, respectively. DutyCycle is
computed as the area of the higher energy content divided by
the area of the entire energy content of the event. FIG. 9
shows an example of dutyCycle apnea, hypopnea and nor-
mal breathing events. FIG. 9 shows examples of the Duty-
Cycle feature calculation for the 3 different event types. A)
Apneas consist mostly of noise, therefore their DutyCycle
value is low. B) Hypopneas include shallow breaths, hence
higher STE values are obtained, which lead to higher
DutyCycle outcomes compared to A. C) Normal breath
events produce the highest DutyCycle values out of the three
classes. It can be seen in FIG. 7 (bottom right) that indeed,
the subject is breathing during almost half of the event.
[0251] FIG. 10 provides a 3-dimensional representation of
one subset of three features out of the 36 extracted features.
FIG. 10 provides Three-dimensional space representation of
the entire database. A subset of three features is used to
demonstrate the diverse scattering of the feature vectors
among the three classes. One can see that most of the
hypopnea events are located between the apnea and normal
breath events.

[0252] E. Classification

[0253] In order to differentiate apnea, hypopnea, and nor-
mal breath sounds, a 3-class cubic-kernelled support vector
machine (SVM) was designed and validated using the
hold-out approach. As we are facing a 3-class classification
problem, a multiclass method should be chosen for the
binary SVM classifier; the One-vs-One method was
selected, where one binary SVM learner is trained for each
pair of classes. In addition, a second cubic SVM classifier
was designed, distinguishing between two classes: apneic
events (apneas and hypopneas together) and normal breath
events. The latter classifier was also validated with the
hold-out method, while the division of the data into design
and validation groups remained.

[0254] The performance of the classifiers was evaluated
using the accuracy measure, which is the number of events
that were classified correctly divided by the total number of
events.

[0255] Results and Discussion

[0256] Table 5 displays the meanAUCs that were calcu-
lated for 10 different features. According to these scores and
using the design dataset, 27 features were selected in the
K-best feature selection process out of the 36 possibilities.
We noticed that many features from the time domain (e.g.
Entropy, ADmean25 and STD) received high meanAUC
scores.

TABLE 5

FEATURES® SCORE

Feature Name meanAUC
Entropy 0.927
Log(STEmean) 0.924
SuperSnore 0.917
ADmean,s 0.916
STD 0.910
STEDmean, 5 0.864
FCMDmean,s 0.826
XcortFFT 0.812
DutyCycle 0.793
ZCR 0.722
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[0257] Using the hold-out method for wvalidating the
designed model, an accuracy rate of 84.7% was achieved for
the 3-class classifier. Confusion matrix of the classifier’s
output is presented in Table 6. As expected, most of the
errors were misclassification between hypopnea and the
other two classes. This is because hypopnea is a sort of
intermediate state between apnea and normal breaths; i.e.
breaths exist, but are partially obstructed. This can be seen
both in time and frequency domains, as demonstrated in
FIG. 7. From the features aspect, FIGS. 9 and 10 also
support this claim where hypopnea receives intermediate
scores.

TABLE 6

3-CLASS CONFUSION MATRIX

Classification

Normal
True label Apnea Hypopnea Breath
Apnea (247) 83.0% (205) 15.0% (37) 2.0% (5)
Hypopnea (58) 12.0% (7) 76.0% (44) 12.0% (7)
Normal Breath 0.0% (0) 8.4% (11) 91.6% (121)
(132)
The values in parentheses indicate absolute number of events.
TABLE 7
2-CLASS CONFUSION MATRIX
Classification
Normal
True label Apneic event Breath
Apneic event (305) 96.1% (293) 3.9% (12)

Normal Breath (132) 8.4% (11) 91.6% (121)

The values in parentheses indicate absolute number of events.

[0258] Clinically, in terms of AHI-directed evaluation of
OSA severity, misclassification between apnea and hypo-
pnea does not affect the resulting score. In FIG. 8 one can see
the considerable overlap between apnea and hypopnea for
the EX-SuperSnore feature (which is similar to the Super-
Snore feature), which prevents a better separation of these
two classes.

[0259] When designed and validated to distinguish
between two classes (apneic events and normal breath
events), the classifier achieved an accuracy of 93.4%. How-
ever, when diminishing the three classes problem into two
classes, the model achieved better accuracy of 94.7%. This
implies that even for the purpose of AHI assessment only,
the separation between apnea and hypopnea contributes
information. Confusion matrix of the 2-classes model’s
output is presented in Table 7 (above).

[0260] The AHI measure treats apnea and hypopnea in the
same way when evaluating OSA severity, despite the fact
that they are different by definition and by their acoustic
features as well. Moreover, it takes as equal 15-second apnea
and 60-second apnea, while the two might occur in separate
sleep stages of a specific subject and probably indicate
different OSA severity status.

[0261] While some of the embodiments of the invention
have been described by way of illustration, it will be
apparent that the invention can be carried into practice with
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many modifications, variations and adaptations, and with the
use of numerous equivalents or alternative solutions that are
within the scope of a person skilled in the art, without
departing from the spirit of the invention, or the scope of the
claims.

1. A method for determining sleep quality parameters
according to audio analyses, comprising:

obtaining an audio recorded signal comprising sleep

sounds of a subject;

segmenting the signal into epochs;

generating a feature vector for each epoch, wherein each

of said feature vectors comprises one or more feature
parameters that are associated with a particular char-
acteristic of the signal and that are calculated according
to the epoch signal or according to a signal generated
from the epoch signal;

inputting the generated feature vectors into a machine

learning classifier and applying a preformed classifying
model on the feature vectors that outputs a probabilities
vector for each epoch, wherein each of the probabilities
vectors comprises the probabilities of the epoch being
each of the sleep quality parameters;

inputting the probabilities vectors for each epoch into a

machine learning time series model and applying a
preformed sleep quality time series pattern function on
said probabilities vectors that outputs an enhanced
probabilities vector for each epoch;

determining a final sleep quality parameter for each epoch

by calculating the most probable sleep quality param-
eters sequence.

2. The method according to claim 1, wherein the method
further comprises carrying out a pre-processing stage com-
prising noise reduction of the signal.

3. The method according to claim 1, wherein the method
further comprises carrying out a breathing detection stage
comprising categorizing portions of the signal as breathing
and other portions of the signal as non-breathing.

4. The method according to claim 1, wherein the one or
more feature parameters are associated with a characteristic
selected from the group consisting of breathing sound con-
tent, body movements, non-respiratory sounds and breathing
pattern periodicity.

5. The method according to claim 4, wherein the one or
more feature parameters comprise at least two feature
parameters associated with at least two of the characteristics
or comprise at least three feature parameters associated with
at least three of the characteristics or comprise at least four
feature parameters associated with at least four of the
characteristics.

6. The method according to claim 4, wherein the one or
more feature parameters are all associated with one of the
characteristics.

7. The method according to claim 6, wherein the one
characteristic is breathing sound content.

8. The method according to claim 6, wherein the one
characteristic is body movements.

9. The method according to claim 6, wherein the one
characteristic is non-respiratory sounds.

10. The method according to claim 6, wherein the one
characteristic is breathing pattern periodicity.

11. The method according to claim 4, wherein the feature
parameters associated with the breathing sound content
characteristic are selected from the group consisting of
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Respiratory mean SNR feature, Respiratory Frequency cen-
troid, ADmean25, SuperSnore, and XcorrPeak;

or wherein the feature parameters associated with the

body movements characteristic are selected from the
group consisting of Body movement percentage feature
and Body movement likelihood feature;

or wherein the feature parameters associated with the

non-respiratory sounds characteristic are selected from
the group consisting of Non-breathing percentage fea-
ture, Non-breathing 90% SNR feature and Non-breath-
ing frequency centroid feature;

or wherein the feature parameters associated with the

breathing pattern periodicity characteristic are selected
from the group consisting of Respiratory cycle duty
feature, respiratory cycle period feature, respiratory
cycle intensity feature and respiratory cycle consis-
tency feature.

12. The method according to claim 1, wherein the one or
more feature parameters are each selected from the group
consisting of respiratory cycle duty feature, respiratory cycle
period feature, respiratory cycle intensity feature, respira-
tory cycle consistency feature, non-breathing percentage
feature, respiratory mean SNR feature, respiratory fre-
quency centroid feature, non-breathing 90% SNR feature,
non-breathing frequency centroid feature, ADmean25,
SuperSnore and XcorrPeak.

13. The method according to claim 1, further comprising
an initial stage of generating the preformed classifying
model comprising:

obtaining audio recorded signals comprising sleep sounds

of a plurality of subjects;
segmenting the signals into corresponding epochs;
generating a feature vector for each epoch, wherein each
of said feature vectors comprises one or more feature
parameters that are associated with a particular char-
acteristic of the signal and that are calculated according
to the epoch signal or according to a signal generated
from the epoch signal;
inputting the generated feature vectors of each subject
into a machine learning classifier along with corre-
sponding true result annotated sleeping scores;

generating the preformed classifying model according to
machine learning.

14. The method according to claim 1, wherein the pre-
formed sleep quality time series pattern function is gener-
ated according to the following steps:

inputting into a machine learning model a plurality of true

result hypnograms divided into epochs, wherein each
hypnogram comprises a sleep quality parameters result
for each of its epochs;

applying machine learning on said plurality of true result

hypnograms taking into account the epoch time
sequences, and the sleep quality parameters at each
epoch time sequence.

15. The method according to claim 1, wherein the sleep
quality parameters are macro sleep stages selected from the
group consisting of WAKE, REM and NREM.

16. The method according to claim 1, wherein calculating
the most probable sleep quality parameters sequence is
carried out by using the Viterbi algorithm.

17. The method according to claim 1, further comprising
an initial step of recording the audio signal.

Mar. 26, 2020

18. The method according to claim 1, wherein the sleep
quality parameters are sleep-disordered breathing param-
eters selected from the group consisting of apnea, hypopnea
and normal breathing.
19. A system for determining sleep quality parameters
according to audio analyses, comprising:
a processor;
a memory coupled to the processor and configured to
store program instructions executable by the processor
to implement the method for determining sleep quality
parameters according to audio analyses, comprising:
obtaining an audio recorded signal comprising sleep
sounds of a subject;

segmenting the signal into epochs;

generating a feature vector for each epoch, wherein
each of said feature vectors comprises one or more
feature parameters that are associated with a particu-
lar characteristic of the signal and that are calculated
according to the epoch signal or according to a signal
generated from the epoch signal;

inputting the generated feature vectors into a machine
learning classifier and applying a preformed classifying
model on the feature vectors that outputs a probabilities
vector for each epoch, wherein each of the probabilities
vectors comprises the probabilities of the epoch being
each of the sleep quality parameters;

inputting the probabilities vectors for each epoch into a
machine learning time series model and applying a
preformed sleep quality time series pattern function on
said probabilities vectors that outputs an enhanced
probabilities vector for each epoch;

determining a final sleep quality parameter for each epoch
by calculating the most probable sleep quality param-
eters sequence.

20. A method for determining sleep quality parameters

according to audio analyses, comprising:

obtaining an audio recorded signal comprising sleep
sounds of a subject;

segmenting the signal into epochs;

generating a feature vector for each epoch, wherein each
of said feature vectors comprises one or more feature
parameters that are associated with a particular char-
acteristic of the signal and that are calculated according
to the epoch signal or according to a signal generated
from the epoch signal;

inputting the generated feature vectors into a machine
learning classifier and applying a preformed classifying
model on the feature vectors that outputs a probabilities
vector for each epoch, wherein each of the probabilities
vectors comprises the probabilities of the epoch being
each of the sleep quality parameters;

determining a final sleep quality parameter for each
epoch;

wherein the one or more feature parameters are associated
with a characteristic selected from the group consisting of
body movements and non-respiratory sounds.

21. A method for determining sleep quality parameters
according to claim 20, further comprising:

inputting the probabilities vectors for each epoch into a
machine learning time series model and applying a
preformed sleep quality time series pattern function on
said probabilities vectors that outputs an enhanced
probabilities vector for each epoch;
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wherein determining the final sleep quality parameter for
each epoch by calculating the most probable sleep quality
parameters sequence.

22. A system for determining sleep quality parameters

according to audio analyses, comprising:

a processor;

a memory coupled to the processor and configured to
store program instructions executable by the processor
to implement the method for determining sleep quality
parameters according to audio analyses, comprising:
obtaining an audio recorded signal comprising sleep

sounds of a subject;
segmenting the signal into epochs;
generating a feature vector for each epoch, wherein
each of said feature vectors comprises one or more
feature parameters that are associated with a particu-
lar characteristic of the signal and that are calculated
according to the epoch signal or according to a signal
generated from the epoch signal;
inputting the generated feature vectors into a machine
learning classifier and applying a preformed classi-
fying model on the feature vectors that outputs a
probabilities vector for each epoch, wherein each of
the probabilities vectors comprises the probabilities
of the epoch being each of the sleep quality param-
eters;
determining a final sleep quality parameter for each
epoch;
wherein the one or more feature parameters are associated
with a characteristic selected from the group consisting of
body movements and non-respiratory sounds.
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