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1. Introduction 

Obstructive sleep apnea (OSA) is a common disorder with a prevalence of 2% 

and 4% in middle-aged women and men, respectively [Young et al, 2002]. 

Obstructive sleep apnea is characterized by the recurrent collapse of the 

pharyngeal airway during sleep, which generally requires arousal to reestablish 

airway patency and resumption of breathing. OSA first symptoms are decrease in 

oxygen saturation, snoring and frequent arousal during night leading to excessive 

daytime somnolence, poor concentration and irritability [Tarasiuk et al, 2006]. 

Moreover, untreated OSA is a major risk factor for cardiovascular disease, 

hypertension, and acute condition such as stroke, myocardial infarction, 

congestive heart failure and even sudden death [Tarasiuk et al, 2006]. OSA 

severity is defined by the number of obstructive apnea and hypopnea events per 

hour of sleep (apnea hypopnea index – AHI).  

 

The gold standard for diagnosis of OSA is polysomnography (PSG). PSG 

requires a full night hospital stay connected to numerous physiologic electrodes 

and sensors which placed on the patient's body in order to record and analyze 

sleep disorders. The high cost of the in-sleep diagnosis, the limited number of 

available sleep laboratories, and the discomfort of the electrodes attached to the 

head and body of the patients, are the limitations of the PSG which leads to the 

desire of having an alternative method to diagnose OSA non-invasively, with 

greater comfort and at a lower cost. 
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Snoring is a common and earliest symptom of OSA, caused by the vibration of 

soft tissues due to turbulent airflow through a narrow oropharynx in the upper 

airway (UA) [Hofshtein, 1996]. Several studies have shown that OSA is 

associated with anatomical and functional abnormalities of the upper airway 

[Ayappa and Rapoport, 2003]. Patients with OSA commonly have narrower and 

more collapsible upper airways then subjects without OSA [Malhotra et al, 

2002]. Similar to the vocal tract in speech production, the UA acts as a variable 

acoustic filter in the generation of snoring sounds [Abeyranthe, 2005]. Therefore, 

it is expected that the acoustic characterizations of snores from OSA patients and 

snores from benign snorers will be different.  

 

However, Even though snoring is the most frequent and earliest symptom of 

OSA, snoring has not been properly exploited in the diagnosis. Literature 

describes few attempts for OSA detection using the snoring sounds. Sound 

intensity [Van Brunt et al, 1997], spectral [Fiz et al, 1996; Sola-Soler et al, 2003; 

Ng et al, 2007, 2009; Matsiki et al, 2007] and pitch [Sola-Soler et al, 2002; 

Abeyratne et al, 2005] related features was tested as a diffrentiative feature 

between benign and apneic snorers. However, none of these works, exhaustively 

analysed all the snoring episodes for the total sleep period. Understandably, one 

of the major difficulties in doing that is the huge amount of data generated in a 6-

7 hours sleep, and the difficulties in manually extracting all the snoring events. 

Those studies investigated few manually isolated snores. More recently, Fiz et al 

[2010] used an automatic nocturnal snore detection that allows analysis of all-

night acoustic signal acquired using a contact microphone. They concluded that 
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sound intensity and some snore frequency parameters may differentiate snorers 

according to OSA severity. However, the major weakness of the aforementioned 

studies is the limited number of analyzed subjects, and as consequences, no 

proper validation was done for the reported results. 

 

Additionally, the majority of the previous mentioned studies have focused on 

intra-snore properties by analyzing snore-by-snore events. It is possible that the 

biological instability of the upper airway’s formation during sleep [Malhotra et 

al, 2002] may lead to alterations in inter-snore properties (i.e. between snore 

events, between clusters of snores and across the night), mainly with relations to 

the proximity of obstructive apnea events per se. To the best of our knowledge, 

such perspective of analysis was not explored. Earlier study among 18 benign 

snorers and 12 apneic snorers analyzed sequential properties of snores across the 

night as a measure of inter-snore properties [Cavusoglu et al, 2008]. They found 

that OSA patients have higher variances of snores' durations, separations and 

average powers. However, authors did not mention any classification abilities 

and on top of that inconclusively findings were reported regard the prediction of 

AHI, mainly due to the small sample size of patients.  

 

To date, there are no unifying hypotheses that incorporate inter- and intra- snore 

properties and jointly investigate their relations to OSA severity. In the current 

study, we developed snore detection algorithm, allows full-night acoustic 

analysis of snoring events. Various of inter and intra snore acoustic properties 

were extracted and investigated, and together, their relations to OSA severity was 



Acoustic analysis of snoring sound signals in patient with obstructive sleep apnea 

Ben-Israel Nir 

2010 

 

4 

 

explored and evaluated, i.e. a system was designed, able to either classify 

subjects into two or three degrees of severity, or direct estimate subject's AHI. 

We hypothesize that the acoustic snoring signal carries essential information that 

may assist discriminate between OSA patients and benign snorers.  

 

Our preliminary results already presented and published on IEEE-EMBS 

proceeding (Buenos Aires, 2010):  [Ben-Israel N, Tarasiuk A, Zigel Y. Nocturnal 

Sound Analysis for the Diagnosis of Obstructive Sleep Apnea. Conf Proc IEEE 

Eng Med Biol Soc. 2010, in press]. Additional paper is currently in peer-review, 

submitted to the European Respiratory Journal describing the bulk of this work. 

 

The following document describes our work. The research objectives are the next 

to be presented. Chapter two presents basics of medical and engineering 

background needed for the understating of the applied methods. Chapter three 

specifies the study architecture, i.e. all the methods for data handling, starting 

from the acquisition process, through pre-processing, to all the applied and 

developed algorithms. Chapter four deals with the experimental setup, i.e. the 

acquisition system, what are the subjects' characteristics? how subjects were 

recruited and the steps they have been through.  Chapter five extensively details 

the results in each of the steps towards the desired system. Chapter six discuss 

the results and consider the findings and other factors in the light of study 

limitations and current literature; and ends with conclusions. Chapter seven and 

last, considers further researches as future work.  
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1.1. Research Objectives 

The overarching goal of this research is to assess whether a nocturnal snore 

sound signal can be used as a predictor for OSA Syndrome?  and if so, does the 

analysis of this snoring signal has the potential to diagnose the disease severity?; 

the proposed research aim to develop a computer-based diagnostic and 

monitoring system for OSA which automatically classifies OSA snorers and 

benign snorers based on their snore sound signals.  

 

Intermediate objectives are the creation and the organization of snoring signals 

database. A non contact condenser microphone, connected to an audio recording 

device, is placed above the patient's bad in the sleeping lab1. The acquired 

acoustic signal (approximately 6 hours) is stored in a computer database with the 

patient information. The next objective is to develop2 an automatic snore 

detection tool aimed to segment sound events into snore, pure breath, silence and 

other background noises.  Subsequently, analysis of the snore episodes should be 

done in order to identify acoustic features which best correlate with OSA severity 

and characterize the acoustic differences between apneic and benign snorers. 

Finally, incorporate the features in order to estimate OSA severity, either 

categorical using classifier, or AHI estimation using regression models. 

 

As aforementioned, in the previous years, various researchers have been tried to 

find the acoustic features which will be able to classify OSA and benign snorers 

 

1 Located in the sleep-wake disorder unit, Soroka university medical center. 
2 Part of the algorithm was developed within the same framework by Dana Weiss. 
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using their snore sound signals. However, several factors differentiate our 

research from previous attempts: (1) Foremost, our method allows the whole 

nocturnal signal to be processed and analyzed. (2) We propose new acoustic 

features, which are related to the dynamics of the acoustic characteristics 

throughout the night. (3) We seek not only the snores, but the relative silence 

during an apnea event. (4) In addition, we use an adapted version of the mel 

frequency cepstral coefficients (MFCC), a common speech processing technique. 

(5) The number of subjects in the study currently stands at 85 subjects, making it 

one of the largest analyzed databases to date. (6) Unlike previous attempts, we 

will use accepted system validation techniques. Moreover, (7) the subjects were 

classified into three degrees of OSA severity (previous studies classify subjects 

only for two categories): comparison group - non OSA (AHI<10), mild to 

moderate OSA (10<AHI<30) and severe OSA (AHI>30), (8) on top of that, for 

the first time, using regression model, subject's AHI will be estimated. (9) And 

finally, the whole system designed to be fully automated. 

 

The proposed approach for OSA’s diagnosis will reduce the expense and 

inconvenience convolved with the monitoring in the sleeping labs by "filtering" 

the healthy subjects and efficiently identifying the relevant patients. Furthermore, 

such system will able to shrink the long waiting list and economize the financial 

for the whole healthcare system. On top of that, OSA among patients, may be 

revealed at much earlier stages, and as consequence, the risk of future health 

implications will be diminished. 
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2. Background 

The following chapter aim to give the reader all the essential background needed 

for understanding this paper and the applied methodologies; in addition, broaden 

literature review is given regards previous and current studies in the field of OSA 

diagnosis through snore acoustic signals - what has been done, pros and cons, 

and what we are proposing further. 

 

2.1. Obstructive Sleep Apnea - Medical Background 

Obstructive sleep apnea (OSA) is a common sleep disorder which became a 

worldwide health concern; a study done by Young et al [1993] on 602 US state 

employees found that it is have an incidence of 24% in men and 9% in women, 

aged 30-60; Whereas, the estimated averaged prevalence of elders suffer from 

OSA worldwide3 is 2% in women and 4% in men [Vgontzas et al, 2001]. 

Furthermore, an interesting asseveration is that up to 93% of women and 82% of 

men with moderate to severe OSA remain undiagnosed [Pang et al, 2005]. It 

seems that the primary explanation for the immensely low rate of diagnosis is the 

lack of low-cost instruments which suitable for mass screening of the population. 

 

2.1.1. OSA Basic Concepts 

OSA is defined as repetitive pauses in respiration, corresponding to obstruction 

in the upper airways during sleep. An apnea event defined as an episode of 

 

3 According to different studies the prevalence varied between countries; from 0.3% in England’s 
males to 20-25% in Israel and Australia [Vgontzas et al, 2001; Young et al, 1993]. 



Acoustic analysis of snoring sound signals in patient with obstructive sleep apnea 

Ben-Israel Nir 

2010 

 

8 

 

complete cessation of breathing, last for at least 10 seconds4, with continuing 

inspiratory effort. A hypopnea  occurs when continues inspiratory effort is 

accompanied by a reduction of at least 50% in airflow, resulting in either an 

arousal or oxygen de-saturation of at least 4% [American Thoracic Society, 

1996]. 

 

Apnea patients may experience 30 to 300 such events per night [Cavasoglu et al, 

2007]. A measure for the severity of the OSA is the apnea-hypopnea index 

(AHI), which expressed as the average number of apnea-hypopnea events per 

hour of sleep; AHI≤10 said to be normal physical condition, while greater AHI 

values, might indicate OSA syndrome. Accepted to claim that AHI > 20 indicate 

the need for CPAP therapy [bar et al, 2003]; AHI>30 indicate severe OSA. 

OSA first symptoms are decrease in oxygen saturation, snoring and frequent 

arousal during night leading to excessive daytime somnolence, poor 

concentration and irritability [Malhorta and White, 2002]. Untreated OSA is a 

major risk factor for cardiovascular disease, hypertension, and acute condition 

such as stroke, myocardial infarction, congestive heart failure and even sudden 

death [Malhorta and White, 2002]. 

 

Several studies have shown that OSA is associated with anatomical and 

functional abnormalities of the upper airway [Ayappa and Rapaport, 2003; Lan et 

 

4 In young children, who normally breath at a much faster rate than adults, the pause may be many 
seconds shorter and still be considered apnea. 
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al, 2006]. Patients with OSA commonly have narrower and more collapsible 

upper airways then subjects without OSA.  

The most common risk factor for OSA in general and even for snoring in 

particular are: (1) male gender, (2) obesity and large Neck circumference, (3) 

smoking, (4) alcohol consumption, (5) ingestion of tranquilizers or muscle 

relaxants and (5) as some studies argue, inheritance (family history) [Hoffstein, 

1996].  

 

 

Figure 2.1: Upper airway anatomy 

 

2.1.2.  The Diagnosis Today 

The gold standard for diagnosis of OSA is polysomnography (PSG). PSG test 

requires a full night hospital stay connected to numerous physiologic electrodes 

and sensors which placed on the patient's body and measure signals such as EEG 

(electroencephalography), ECG (electroencephalography), EOG 

(electrooculography), EMG (electromyography), airflow, respiratory effort, leg 

Hard palate 

Soft palate 

Uvula 
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movements and blood oxygen saturation; all those in order to analyze the sleep 

disorder [Abeyratne et al., 2005].  

  

Figure 2.2: Patient during polysomnography test in the Sleep-Wake Disorders Unit, Soroka 

University Medical Centre. 

 

The high cost of the in-sleep diagnosis and the limited number of available sleep 

laboratories, are some of the limitations of the PSG. Moreover, elderly or sick 

patients often find the PSG equipment too cumbersome, the electrodes attached 

to the head and body of the patients extremely discomforts and therefore may be 

reluctant to spend the night in the sleep laboratory.  

 

The limited PSG facilities around the world resulted in long waiting lists, and as 

aforementioned, over 90% individuals with OSA currently remain undiagnosed 

[Flemons et al, 2003]. Thus, this leads to the desire of having an alternative and 

available method for diagnosis of OSA non-invasively, with greater comfort and 

at a lower cost. 

 

Subjective Assessments tool, frequently used to study OSA and snoring is 

questionnaires, which founded to be useful as a predictor of sleep apnea, 
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although, myriad studies showed disadvantages and limitations. The main 

disadvantage described by Hoffstein [1996] as “most snorers are unaware of their 

snoring”; therefore, he argues that it should be answered by the bed-partners, 

which is later founded to be mostly uncorrelated with objective measurements.  

Many researchers have attempted to search for other modalities to detect OSA, 

such as nasal pressure [Almeida et al, 2006], airflow [Nakano et al, 2007], and 

oxygen saturation [Hornero et al, 2007]; however, limitations such as: (1) 

specific expertise may be needed at the test site, (2) at least one cumbersome 

physical contact sensor is needed, (3) and sometimes uncertainty conclusions, are 

only few of the encountered. 

 

Snoring is one of the primary symptoms of OSA and for long been viewed as the 

base for potential screening tool for apnea; although, it has not properly exploited 

in the diagnosis yet.  
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2.2. Snoring and OSA 

Snoring is a common and earliest symptom of OSA. The odds for OSA are 3.2 

times higher in snorers than in non-snorers [Wilson et al, 1999]. Snoring, caused 

by vibrating structures of the upper airway (UA). Any membranous part of the 

UA lacking cartilaginous support may vibrate, including soft palate, uvula, 

pharyngeal walls and the rest of the UA (almost to the level of vocal chords), due 

to turbulent airflow through the oropharynx. Recent studies of snoring sounds 

indicate that snoring occurs during inspiration and expiration5 [Perez Padilla et 

al, 2003].  

 

During sleep the tissues of the humans’ body are relaxed. This tendency may 

cause constriction along the UA; accordingly, the breathing might “triggers” 

mechanical oscillations of tissues, such as those previously mentioned, around 

the constriction site. The snoring is the result of the tissues’ oscillatory motion 

[Cavasoglu et al, 2007]. 

 

Theoretical analyses of snoring show that due to its instability, the repetitive 

oscillations of the walls may occur anywhere along the airway once the 

appropriate relationship between flow, airway elastanse and UA dimensions are 

satisfied. For each snorer, these parameters are unique, and therefore in different 

patient, the site of the sound production will vary. Moreover, results obtained by 

direct observations of the upper airway during sleep, show that even in the same 

patient, snoring may be generated in different sites [Skatvedt et al, 1993]. 

 

5 Rather than only during inspiration as was thought previously. 
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Although snoring is common and routinely been measured in sleep laboratories, 

little is known about acoustic characteristics of snores produced by OSA versus 

benign snorer. Earlier studies investigated various sound intensity [Van Brunt et 

al, 1997], spectral [Fiz et al, 1996; Abeyratne et al, 2001; Ng et al, 2007, 2009; 

Matsiki et al, 2007] and pitch [Sola-Soler et al, 2002] related features.  

To further understand and discuss those attempts, some engineering background 

and explanations should be given regard acoustic analysis of snores. 

 

2.2.1.  Mathematical Model of Snore Production 

Many authors suggest that snore and speech production share many similarities. 

They all [Abeyratne et al, 2005; Sola-Soler et al, 2003] ascribe to the upper 

airway same objective as to the vocal tract in speech processing theory; both act 

as an acoustic filter during the production of the sound.  Mathematically, the 

recorded sleep sound signal, can be modelled as: 

                                 𝑠(𝑛) = 𝑠𝑠𝑛𝑜𝑟𝑒(𝑛) + 𝑠𝑏𝑟𝑒𝑎𝑡ℎ(𝑛) + 𝑏(𝑛)                                  (2.1) 

Where s(n) {n-sample number} is the recorded discrete signal, ssnore(n) is the 

snore episode, sbreath(n) is pure-breath and b(n) represent the background noise 

(all unwanted acoustical and electrical noise coming from the environment and 

measuring instruments). Moreover, the snore episodes composed of voiced and 

unvoiced segments (ssnore(n)= sv(n)+ suv(n)) depends on the origin of the 

excitation. The snoring episode {sv(n), suv(n)} generated through the UA in a 

similar manner to the speech production: 
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                                                  𝑠𝑢𝑣 = ℎ𝑢𝑣(𝑛) ∗

𝑔𝑢𝑣(𝑛)                                               (2.2) 

                                                     𝑠𝑣 = ℎ𝑣(𝑛) ∗ 𝑔𝑣(𝑛)                                                 (2.3) 

Where ‘*’ denotes the linear convolution operator, the ‘g’ are the excitation 

sources and ‘h’ represent the UA which pretended to be an acoustic filter (also 

called total airway responses - TAR; slowly varying functions). Inspired by the 

speech analysis, the excitation sources can be considered a white noise process 

for unvoiced snores, and a pseudo periodic sequence, coming from the vibrated 

tissue, for the voiced segments (as the vibration of the vocal chords in speech 

analysis) [Sola-Soler et al, 2003]. 

To put it in order, voice segment generation modelled as vibration in the upper 

airways, represented as repetitive sound pulses of the type  ∑ 𝑝(𝑡 − 𝑘𝑇), filtered 

by the anatomic properties of the upper airway and surrounding tissue (h(n)). 

Then, neglecting the train finite duration, the produced signal can be expressed as 

𝑠(𝑛) = 𝑤(𝑡 − 𝑘𝑇), or in the frequency domain as:  

                                                    𝑋(𝑓) = 𝑊(𝑓) ∑ 𝛿 (𝑓 −
𝑘

𝑇
)                                 (2.5) 

Regards the last expression: first, the fundamental frequency defined to be f0=1/T 

is the rate of the pulse repetition (the vibration frequency); second, W(f) is the 

spectral envelope contains knowledge about the filter, means carry information 

about the Upper airway anatomy [Abeyratne et al, 2005]. 
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2.2.2. Concepts from Speech Processing 

To understand the principles behind our methods, several explanations of 

common speech processing concepts are in order.  

 

Liner Predictive Coding Model (auto regressive filter) 

In speech processing theory, the spectral envelope originated from the vocal-tract 

contains information about the anatomical state. Most of the characteristics are 

hidden in the resonance frequencies. Well known method to extract the envelope 

of the acoustic filter frequency response is the linear predictive coding (LPC 

model) which simulates the acoustic filter to an auto regressive (AR) filter (also 

called all-pole filter). Fig 2.3 illustrates a p-order LPC model for the production 

of the sound signal.  

 

Figure 2.3: Speech signal production model adopted for snoring 

 

The excitation source u(n) is modulated by the gain factor G and the scaled 

source is used as an input to the upper airway which is modelled to an AR filter 

(LPC); the p predictor coefficients, ak, of the AR are computed using the auto-

correlation method [Makhoul et al, 1975] guaranteeing all poles to be stability 

(inside the unit circle); To compute the coefficients for the auto correlation 

method, the Levinson-Durbin recursion is utilized aim to solve the Yule-Walker 

equations [Deller et al, 2000]. 
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Cepstrum and mel-frequency-cepstrum  

The cepstrum is a representation used in speech signal processing, to convert 

signals combined by convolution (such as the excitation and its filter) into sums 

of their cepstra, for linear separation. In particular, the power cepstrum is often 

used as a feature vector for representing the human voice. For these applications, 

the spectrum is usually first transformed using the mel-scale. The result is called 

the mel-frequency cepstrum or MFC (its coefficients are called mel-frequency 

cepstral coefficients or MFCCs). The cepstrum is useful in these applications 

because the low-frequency periodic excitation from the vocal cords and 

the formant filtering of the vocal tract, which convolve in the time domain and 

multiply in the frequency domain, and as such, are additive and in different 

regions in the quefrency domain. The mel-frequency cepstrum coefficients 

(MFCC) are computed as: 

                 1

1
cos , 1,2.......,

2

K

i k

i

MFCC X i k i M
k



=

  
= − =  

  


                         

Where M is the number of cepstrum coefficients, and Xk, k, = 1, 2,..., K, is the 

log energy output of the kth filter (K – Number of filters) [Deller et al, 2000]. 

 

Formants 

The resonances of the vocal tract frequency response are known as formants, 

which are manifestation of energy maxima. Studies in speech analysis have 

shown that the firsts formants relate to the location and amount of constriction of 

The UA; more precisely, F1 (the first formant) associated with the degree of 

(2.6) 
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constriction in the pharynx, F2 (the second formant) is related to the degree of 

advancement of the tongue relative to its neutral position while F3 corresponds to 

the length of the UA and the degree of the lip rounding [Deller, 2000]. Due to the 

similarities of the snore and speech productions; it can be assumable that the 

spectral envelope of the UA frequency response during snoring, expressed by the 

formants, contain vital information about OSA condition. 

 

Pitch 

As mentioned in the mathematical model of snore production, the excitation 

source in the production of the ‘vocal’ sound resembles an impulse train with 

frequency f0. This frequency also called the pitch or the fundamental frequency. 

As we will see later, the pitch offered by authors [Sola soler et al, 2002; 

Abeyratne et al, 2005] as a differentiate feature between OSA and non-OSA 

snorers. There are plenty of approaches to extract the pitch from the recorded 

signal such as time domain methods (algorithm based on autocorrelation function 

and other event rate algorithms, phase based algorithm), frequency domain 

methods (cepstrum based methods, inverse LPC) and statistical domain method 

(based on neural networks) [Fukanaga, 2003]. For the purpose of our study, in 

order to extract the pitch we used the autocorrelation method [Deller, 2000]. 
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2.2.3. Acoustic Analysis of Snoring for OSA assessment 

Recently, much research has been dedicated to the analysis of snore signals in 

order to differentiate apneic patients from healthy patients. Amongst the 

attributes examined were acoustical characteristics such as sound intensity, 

spectral, pitch and time related features. However, in all of those researches, the 

conclusions were based on relatively small number of subjects, and they have 

usually investigated few and manually selected snoring events, and as such, 

essential information were not fully explored. On top of that, their results were 

limited and happen to contradict each other. In this section we will deepen on the 

key researches in the field.  

 

Fiz et al [1996] studied the spectral patterns of snore sounds from simple snorers 

and OSA patients and reported that all seven simple snorers’ snores and two of 

ten OSA patients’ snores in their database were dominated by a harmonic 

spectral content, Furthermore, they indicated that the peak frequency in most of 

the OSA patients is lower compared to that of simple snorers. In contrast to their 

findings, Hara et al [2006] investigated the peak frequency (PF, the location of 

spectral peak) and found higher peak frequency values for OSA patients (in 

contrast to the findings of Fiz et al). 

 

The research of Sola soler et al [2003], argues for larger variability between 

snores spectrums’ patterns of the same OSA patient than the variability of the 

benign snorer; they explain it by the reduced stability of the upper airway in OSA 
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patients, closely related to its tendency to collapse. Their findings are the base for 

some of our proposed features. 

 

Several groups study the relationship of the fundamental frequency of the OSA 

patients’ snores. Sola-soler et al. [2002] analyzed few features related to the 

pitch: pitch mean value, pitch STD and pitch density, which is the fraction of the 

snoring time where the pitch is detectable over the total snoring time. Pitch mean 

and standard deviation values were analyzed in the plane (figure 2.4). The line 

m=1.85s+0.69 was able to correctly classify 58.4% snores from benign snorers 

and 57.6% of apneic snores; Above the line (higher mean frequency and lower 

std) correspond to benign snorer and below, lower frequency and larger variance, 

for the apneic snores. Similar results and intensifications can be observed in the 

study of Abeyratne et al from 2005. 

 

Figure 2.4: Pitch mean value against pitch std plot. The line obtained with linear discriminant 

analysis tries to separate values from simple snorers (hollow circles) and post-apneic snores (star ‘*’). 

[Morera el al, 2002] 

 

It is known that in OSA, in many cases, there is oedema of the soft palate [Ryan 

et al, 1991]. Generally, vibrating structure emit a sound spectrum which is 
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related to their mass, in such a way that, the higher the mass, the lower the 

frequency. This fact can support the above classification. 

 

In Miyazaki et al research [2002], the authors argue that sounds of snoring 

(particularly, the pitch frequency) can vary according to the production site. In 

their study, the patients were examined by PSG with simultaneous recordings of 

the intra-luminal pressure (four invasive sensors) of the UA and snoring sound. 

Based on the pressure’s gradient between adjacent sensors, they devided all the 

snoeres into 4 types: soft palate type, tonsil/tongue type, combined type and 

larynx type. For each snorer, the fundamental frequency (F0, or pitch) was 

estimated and classifiable values were found as shown in table 2.1. Note that in 

the tonsils type, F0 was distributed with wider range and high average value; this 

is attributable to the variety of the physical contours of the obstructed sites: 

lingual tonsils, palatine tonsils, root of tongue, lateral pharyngeal wall and a 

combination of them. In contrast, the larynx type snores (which are rarer type as 

the author mentioned) had same pattern in all the presence. 

Table 2.1: Site of obstruction and the pitch [Hz]. by Miyazaki et al, 1998. 

Soft palate Tonsil/tongue Combined Larynx 

102.8+/-34.9Hz 331.7+/-144.8Hz 115.7+/-58.9Hz ~250Hz 

 

 

The wide range of the pitch values (100-350Hz) in OSA patients, might put Sola-

soler et al [2002] conclusions in question; whether the snorer's pitch mean values 

were affected due the obstruction site, rather then been generated by OSA 

patients. 
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The pitch density, reported in the same framework of Sola-soler [2002] founded 

to be more interesting and reliable; the authors claimed that high pitch density is 

a characteristic of very regular snores. Moreover, when they examine the pitch 

density against the OSA severity (AHI), a monotonic decrease founded. This 

indicates that a greater irregularity is present in snores from acuter OSA subject. 

Note that the analyzed snore of the OSA snorers in their research was the first 

three Post-apneic snores.  

 

More recently, Fiz et al [2010] have used an automatic nocturnal snore detection 

that allows analysis of all-night acoustic signal acquired using a contact 

microphone. They concluded that sound intensity and some snore frequency 

parameters may differentiate snorers according to OSA severity. However, their 

conclusion was based, as well, on a small sample of patients (37), without 

sufficient validation (resubstitution method, i.e. optimistic evaluation), and 

reported limited performances (Patients were classified with thresholds AHI>5 

with 87% sensitivity and 71% specificity). For comparison, we implemented 

their presented methodology, and evaluate it on our database. The results will be 

given later on this document. 

 

Another earlier study among 18 benign snorers and 12 apneic snorers, analyzed 

sequential properties of snores across the night as a measure of inter-snore 

properties [Cavusoglu et al, 2008]. They found that OSA patients have greater 

variances of snore duration, separation, and average power. However, 
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inconclusive findings were reported regarding the prediction of AHI by these 

inter-snore measures, mainly due to the small sample size of patients. 

 

Completely different approach proposed by Van Brunt et al [1997]. The main 

concept was seeking for the amount of acoustical signature events which defined 

as a loud sound proceeded by at least 10 second but no more than 90 second of 

silence. Such algorithms are very sensitive to background noises. Moreover, 

hypopnea for example, is not an absolute obstruction; therefore it may not be 

considered as an event. In their study, they define constant threshold of 50 µV 

for the detection of a sound event. It is clear that such threshold might results in 

numerous misdetections or false alarms, that because snoring sound intensity can 

vary meaningfully across night, between nights and between different patients; 

an adaptive threshold should be implemented in order to improve the robustness 

of the algorithm. Nevertheless, compared to the PSG test, their prediction was 

extremely satisfying as figure 2.5 exhibits. 

 

 Figure 2.5: Relationship between the prediction of acoustical signature events and the results of 

polysomnography [Van Brunt et al, 1997]. 
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Recently, few studies investigated non-linear and properties of snores for OSA 

detection. Abeyrante et al [2007] propose an algorithm based on higher-order-

spectra (HOS) to jointly estimate a mixed-phased model for the total airway 

response (TAR), i.e. for the spectral envelope of the upper airway filter, aiming 

to further investigate the relation to OSA. Matsiki et al [2007], explore 

relationship between snoring analysis and apnea syndrome using wavelet 

transform. Andrew NG, 2009; ivestigates the feasibility of using nonlinear 

coupling between frequency modes in snore signals via wavelet bicoherence 

(WBC) analysis for screening of OSA. All of these methodologies based on the 

argument that classical linear models could not completely characterize snore 

signals, which are claimed to be nonlinear and non-Gaussian in nature. 

Moreover, unlike wavelet-driven algorithms, the commonly used Fourier-based 

approaches are limited to stationary signals, and thus, they are insensitive to 

capturing any form of transient, intermittent interactions in snore signals that are 

primarily nonstationary. However, despite the merit of the algorithms, none of 

the papers, presented substantial results, but only a primary results and a claim 

that further investigate should be done. 

 

Not all of the previous reported studies, proposed any information regard the 

achieved ability to classify OSA snorer from benign snorer. For purpose of future 

comparison, table 2.2 present brief summary of those who specifically indicated 

their classification's performances. 
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Table 2.2: Previous Results 

Name Basic concept Database Validation 

Method 

Performances  

(as reported) 

Sola-soler 

2002 

Pitch Analysis 16 subjects. For 

OSA subjects, 

only post apneic 

snores were 

investigated.  

Res. 60% correct detection 

Abeyratne 

et al 

2005 

Pitch analysis 35 subjects. Res.  OSA detection sensitivities 

of 86–100% while holding 

specificity at 50–80% 

Ng et al 

2006 

Analysis of first 

formants 

8 subjects. 10 

snores from each 

subject. 

Res. sensitivity = 

90%, specificity = 92% 

Ng et al 

2007 

Formant analysis 34 patients. 40 

snores were 

investigated per 

subject. 

Res. sensitivity of 88%, 

specificity of 82% 

Cheng et al 

2007 

Sound intensity 10 OSA patients. Holdout 

method 

average sensitivity was 

81.1% (range 62.2%–

96.3%) and the average 

PPV was 73.3% (range 

41.6%–93.6%) . 

Sola-soler 

2007 

Pitch and 

frequency 

analysis 

37 subjects. Res. and 

cross 

validation 

(Leave one 

out) 

sensitivity higher 

than 83% and a specificity 

between 73% and 88% 

Ng et al  

2009 

Nonlinear Mode 

Interactions 

(wavelet 

becoherence) 

30 apneic  

subjects. 

Few manually 

selected snores 

Res. sensitivity = 77.7–79.7%, 

specificity = 

72.0–78.0%, p<0.0001) 

Fiz et al 

2010 

Sound intensity 

and several 

snore frequency 

parameters. 

37 subjects. full 

night analysis 

Res. sensitivity (specificity) of 

87% (71%) 

 

The majority of the previous mentioned studies have focused on intra-snore 

properties by analyzing snore-by-snore events. It is possible that the biological 

instability of the upper airway’s formation during sleep may lead to alterations in 

inter-snore properties (i.e. between snore events, between clusters of snores and 

across the night), mainly with relations to the proximity of obstructive apnea 

events per se. To the best of our knowledge, such perspective of analysis was not 
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explored. Moreover, there is no unifying hypotheses that incorporate inter and 

intra snore properties and investigate their relations to OSA severity. 

 

The aforementioned studies were focused in classification of subjects into two 

categories: healthy or apneic snorers (with different values of AHI thresholds). 

However, none of them tried to classify OSA subjects according to the severity 

of the syndrome, i.e. mild, moderate and severe OSA; on top of that, no attempt 

was made to estimate the AHI value itself. Such attitude should be further 

explored. 
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3. Methods 

In the proposed research, subjects sleep sounds were recorded during nocturnal 

PSG study. In the following section I will describe all the data handling process, 

starting with pre-processing via all the signal analysis approaches and their 

evolutions. 

Generally, the process consists of two major phases – design phase for system 

training and test phase for system evaluation. Both phases have similar data 

handling (figure 3.1); after pre-processing, an automatic snore detection 

algorithm was developed and applied in order to analyze the entire snores across 

the night; various acoustic features were extracted and investigated; Bayes 

classifier was designed according to the selected features and PSG results. 

Subjects were classified into categories of OSA severity, according to subject's 

AHI. In addition, AHI was estimated (i.e. AHIEST) using multivariate regression 

model and was compared to the gold standard PSG result (i.e. AHIPSG); System 

was evaluated using accepted performance evaluation methods (data was 

separated into design and test sets according to the evaluation method). 

 

Figure 3.1: Block diagram of the audio-based OSA recognition system 
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All implementations and statistics in this work were done offline using 

MATLAB (R-2008a, The MathWorks, Inc., Natick, MA). 

 

3.1. Pre-processing 

Before signals were headed for analysis, each recorded signal (approximately 6 

hours), was digitized (16bit, 44,100Hz), down sampled to 16 KHz and 

synchronized with PSG study onset (will be detailed in Section 3.1.1). The 

synchronization process is required because our recorder is independent with the 

PSG system and their inception time might be delayed for few seconds, or 

sometimes, even more (when laboratory staff forgets to turn it on 

simultaneously). Moreover, if needed, noise reduction methodologies were 

applied to overcome some noises ascribed to some electrical instruments as will 

be detailed in section 3.1.2. 

 

3.1.1. Signal Synchronization  

The synchronization of the recorded signal to PSG onset was done automatically 

using simple user interface (GUI), which require only the signal files paths 

(figure 3.2 exhibit typical screen shot of the GUI). The algorithm estimates the 

cross correlation function between the sound-level-meter channel of the PSG and 

our recordings and seeks its maxima. The maximum correlation indicates the 

exact time difference. At the beginning, first 5 minutes of the signal is analyzed; 

in the case when the correlation value is not high enough, better match will be 

searched in the next 5 minutes. Clapping hands in the beginning of the recording 
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facilitate the sync-process; the hand claps are relatively energetic and notable, 

and therefore, can reveal high cross-correlation values. 

 

 

 

3.1.2. Noise Reduction 

The recorded snoring sounds might be corrupted with background noises, leading 

to inconsistencies in analysis. In this study, the data acquisition taken place in-

laboratory setting, and prima facie, extraneous noises should be neglected. 

However, during the time, we encountered that several noises affect our signals 

significantly. In further research we found out that two main noise components 

should be taken care: 
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Figure 3.2:  Screen-shot of graphical user interface designated for synchronization process. upper 

panel represent energy envelope of the acoustic recorded signal, and lower panel represent the sound 

level meter (channel DC7 of the PSG). The three energetic events in the middle of each panel are 3 

handclaps. About 0.7 sec delay was obtained in this example. 
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(1) Noise which is coming from the air condition adding a dominant 100Hz 

component which disturbs, inter alia, the pitch extraction algorithm (same 

frequency range). Therefore, in order to overcome this issue, first, the labour 

staff were asked to close the AC as long time as possible during night. 

Second, when necessary, simple 100Hz narrow IIR notch filter was applied 

(implemented using Matlab, filter design toolbox, The MathWorks, Inc., 

Natick, MA). 

 

 

 

(2) The respiratory belt's instrument is producing a sound artifact with varying 

frequency (around 2200Hz). Therefore, a simple filter, with a constant stop 

frequency, will not address the problem. Two approaches were applied to 

address the issue: first, an acoustic cover/box which is able to effectively 

filter acoustic noises above 500 Hz, was built and positioned as showed in 

figure 3.4. The positioning was done not before we had the approvement of 

the hospital's engineering unit (safety considerations such as heat resistance). 

 

Figure 3.3: the air condition produces a 100Hz acoustic artefact. 
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Figure 3.4: the acoustic cover (melamine sponge) placed over the respiratory instrument. 

 

Second, an iterative algorithm which continuously finds the exact noise 

frequency and filters it was written. The algorithm is described clearly in the 

following flow chart, figure 3.5.  
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segment which has low 

energy  
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Figure 3.5 (C):  

Steps III; Finding the noise 

frequency in the estimated 

spectrum. 

Figure 3.5 (A): Flow chart 
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3.2. Snore Detection Algorithm 

The nocturnal signal consist of different types of background and transient noises 

such as speech, coughs, blanket sounds, body movements, etcetera; Isolating the 

snores from the entire extraneous noises will allow pure acoustic analysis. In 

order to isolate the snores, an automatic snore detection system was designed. It 

should be noted that most parts of this algorithm was developed in the same 

framework by Weiss Dana, after a depth investigation. The main concept of the 

algorithm is shown in the following block diagram (Figure 3.6). 
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Figure 3.6: Block diagram of snore detection algorithm 

  

After the aforementioned pre-processing, an event detection algorithm was 

implemented based on an adaptive energy threshold. Basically, the threshold is 

calculated from histogram of one minute moving window by evaluate 10% of the 
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histogram peak value; further adjustment is done, however, this isn't the scope of 

my work (can be found in Dana Weiss senior project) so I won't detail.  These 

detected events are snore suspected events; they are relatively short and 

energetic.  

 

Basically, the algorithm is subdivided into training and testing phases. In the 

training phases the detected events was manually classified as either snore or 

noise events using destined user interface (detailed in 3.2.1). Subsequently, the 

following features was extracted from each detected event: twelve linear 

predictive coefficients [Deller, 2000], average pitch value (calculated via 

autocorrelation method [Deller, 2000]), event duration, total energy, and the time 

from the beginning of the event to its highest peak. The manually annotated 

events, i.e. their features, were used to estimate parameters of Gaussian Mixture 

Models (GMMs) [Fukunaga, 1990]; one model for snore events (order 3), and 

one for different noise type events (order 10). 

 

During test phase, the event detection algorithm was applied followed by the 

extraction of the same event feature set. Consequently, each of the events' feature 

set is matched to the designed models and ascribed as either snore or noise 

depend on the most likely model.   

 

In order to validate the performance of the algorithm, we used the manually 

classified events as both for the design phase and for the test phase, and evaluate 

the detection rates using resubstitution (optimistic estimation) and 5-fold cross 
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validation methods(pessimistic estimation). The motivation of using both 

methods is to assess whether the complexity of the classifier is suitable for the 

amount of data, i.e. to have an indication for possible over-fitting. 

 

Suggested amelioration to the algorithm was to combine sleep-wake information 

according to EEG and to assess whether it improve the algorithm performances. 

Such data is easy to obtain (without EEG signal) using simple actigraph.   

 

3.2.1. Snore Manual Segmentation 

An initial step towards automatic snore detection algorithm was the creation of 

an assistant graphical user interface (GUI) aim to manually classify events into 

snore\non snore events. Generally, in order to design snore detector, training data 

should be available, i.e. database of snores and database of different noise types. 

Those databases should be large enough if we desire a reliable model. Therefore, 

GUI as we developed is essential for efficient creation of such databases. 

 

The following GUI gets as an input all the energetic sound events in the 

nocturnal signal, and allows the user to go over those events (listen) and decide 

whether it is a snore or a noise event. Finally the user annotation is saved into 

destined file. 

 

In addition, this GUI helps with the quality assurance of the automatic snore 

detector, i.e. to test and evaluate the detector performance. Figure 3.7 exhibits a 

screenshot of the graphical interface.  
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Figure 3.7: GUI for manual events classification. The GUI is able to exhibit the events, play it, change 

its boundaries and select its classification (snore/non-snore event) 

 

3.3. Feature extraction 

The bulk of my thesis, as we see it, summarized into this section. During the 

thesis numerous of acoustic features were examined, including both 

implementations of previously reported features, and exploring novel acoustic 

features. In case feature found to be correlated with OSA severity, we select this 

feature for our system; elsewhere, we checked weather the feature contribute to 

the classification ability of previously selected feature, and only if not, we 

abandoned it. Finally, five acoustic features which were best explain the relation 

to AHI, were chosen. Linear regressions were performed to determine the 

correlation between every selected feature values and the AHI. In case nonlinear 

transformation of the data improves the correlation we calculated linear 

regression to the transformed feature. In both case, r2 will be calculated from the 
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linear line. In the following section the selected acoustic features will be 

extensively detailed. 

 

3.3.1. Mel Cepstability 

The name derived from ‘mel frequency cepstrum coefficient stability’, i.e., 

measures  the entire night spectrum's stability, expressed using mel frequency 

cepstral coefficient (MFCC) [Deller, 2000] which is a representation of the short-

term power spectrum, based on a cosine transform of a log power spectrum, on a 

mel-scale of frequencies. The Mel Cepstability feature for subject j was defined 

as the sum of variances of 12 MFCCs extracted from the highest energy frame 

(30 msec long)  in each snore, normalized by mean of Es (the total energy of the 

sth snore) over all jth subject snores: 
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where ci  is a vector of the ith MFCC of all the snores. S is the total number of 

snores of subject j. Due to the instability of the upper airway’s muscle in OSA 

patients [Malhotra et al, 2002; Ayappa and Rapoport, 2003], which is represented 

by the spectral envelope [Abeyratne et al, 2005], lower variances of benign 

compared to apneic snorers are expected. 

 

3.3.2. Running Variance 

Overall analysis of the continuous nocturnal signal and previous sleep related 

studies [Cavasugolo et al, 2008, Fiz et al 2010] has claimed that the sleep pattern 

and its characteristics, including the acoustics, varied throughout the night. 
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 In order to investigate the eventuation: (1) all the snores were clustered into 

groups of adjacent snores, i.e. a snore is ascribed to a group according to its 

distance from the closest snore in the group. In cases where the duration between 

the group and the snore is less than one minute, the snore is ascribed to the 

group. In addition, due to feature calculation matters, a group will not contain 

more than 20 snores. (2) Simultaneously, the total energy of each snore was 

extracted (3) and the within group feature variance was evaluated. (4) finally, for 

each patient, the global mean of running variances was calculated. 

 

The motivation to use the running variance feature can be explain simply with 

the following illustration: 

         Benign Snorer (AHI=3.2h-1)             Benign Snorer (AHI=27.3h-1) 

 
Figure 3.8: Illustration for better understanding of the running variance feature. left – benign snorer 

(AHI<3.2); right – apneic snorer (AHI=27.8). 

 

The illustration presents time course of maximal snore energy of apneic (right) 

and benign (left) snorer. Calculating the total variance of the feature might 

indicate that the benign snorer persist higher variances. However, according to 

the illustration, every observer will argue that the apneic snorer tend to present 

higher variations. When using the running variance, or one can name it 'short 

time variance', the average within group variability will be higher for the apneic 

snorer. 
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3.3.3. Apneic Phase Ratio  

Implementation of the aforementioned feature, raises a query: Do OSA and non-

OSA subjects exhibit similar acoustic properties (feature variation) at portions of 

the night located distant to obstructive events? or in other words, whether the 

acoustic difference between benign and apneic snorers found expression mainly 

around those obstructive apnea events.  

In order to investigate and address these queries, the acoustic data was 

synchronized with the PSG data to extract for each group of snores the distance 

to its closest apnea event. We define benign phase as the portion of sleep when 

no obstructive apnea occurs within a radius of 10 minutes. Apneic phase is 

defined as the portion of sleep, four minutes around each apnea event.  

Indeed, we found interesting findings. Figure 3.9(a) and (b) show the histograms 

of the running variance features, for non-OSA and OSA subjects at benign 

phases and at apneic phases. For Both Subjects, variance histograms are similar. 

Figure 3.9(c) shows the difference of those histograms, when OSA and non-OSA 

subjects were merged.  

 

Fig.  3.9: (a,b) – Histogram of the running variance feature in benign and apneic phase, non-OSA vs 

OSA subjects. (c) – Histogram of OSA and non-OSA subjects together, separated by benign vs apneic 

phase. 
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Naturally, OSA patients have far more apneic phases. We assume that high 

feature variation within snore groups demonstrates apneic phase and low 

variance means benign phase. Figure 3.10A upper panel demonstrates ascension 

of the feature values around the apneic phase (marked with asterisk). Figure 

3.10B represents typical benign phase and apneic phase. It is easy to see that in 

the apneic phase larger variability exist. 

Therefore, we define apneic phase ratio feature as the relative number of snore 

groups with variance larger then ζ, i.e. it measures the quantity of apneic phase 

throughout the night. Basically, the choice of ζ was empirically, however, an 

adjustment is done for each patient, according to the total energy of the patient's 

acoustic nocturnal signal. 

 

 

 

Figure 3.10: Benign and Apneic Snoring Phases. (A) Upper panel - time course of the running 

variance feature (arbitrary units); dots indicate benign snoring phase and asterisk – apneic phase. 

Middle panel – marking of obstructive apneas events (by PSG) by vertical lines. Lower panel - snore 

amplitude (arbitrary units). Note the ascension of the running variance values during apneic phase, 

i.e. around apnea events. (B) Upper panel demonstrate acoustic signal of typical apneic phase of the 

same subject taken from the time indicated by right arrow in A. Note the instability of the snores 

signal. Lower panel - typical benign phase, i.e at least 10 minute distant from obstructive apnea 

events. Note the differences in time base between A and B. Data was collected from 62 years man, 

BMI=28.7 (kg/m2), AHI=33 (events/hr) about 2 hours after sleep onset. 
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3.3.4. Inter Event Silence  

The acoustics of apnea event can be characterized through its pattern of silence 

in between two sound events (figure 3.11).  

Correctly detecting and appraising of those suspicious intervals for a patient can 

lead to an accurate estimate of the real number of apnea occurrences. 

 

 

Figure 3.11: Typical pattern of apnea event. The acoustic audio signal (top) and the energy signal 

(bottom). 

 

Only intervals of >10 up to 90 seconds were investigated. The reasons for these 

thresholds are as follows: 10 sec is formal definition of obstructive events in 

adults [American Thoracic Society, 1996]. Maximum of 1.5 minutes were 

chosen due to additional experiment, when we detect silent event according to 

PSG proven obstructive events, and plot histograms of the inter-event silence 

duration (figure 3.12). We set the maximum duration according to 95% of the 

silence durations.  
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Figure 3.12: Distribution of Inter Event Silence durations. Histogram of silence durations that were 

marked as an obstructive events by PSG technician. Note that 95% of silence periods are <90 sec 

(arrow head). Threshold of ninety seconds was set to be the maximum length investigated when 

extracting the Inter-Event-Silence feature. 

 

To extract those inter event silences: (1) first, we use the event detection results 

for defining optional intervals, suit the duration constraints; (2) Then, to ensure 

the subjects do not breath during “silence events”, even slightly, a massive 

acoustic filtration was performed (using spectral subtraction method [Deller, 

2000]). This procedure enabled detection of minimal breathing sounds that may 

be hidden by the background noise. An analogous apnea event detector already 

suggested [Van brunt et al, 1997] and will be discussed afterwards. 

 

3.3.5. Pitch Density  

[Sola-Soler et al, 2002], is a measure for the stability of the tissue’s vibration 

frequency. Each snore event was subdivided into 30msec frames. For each frame, 

the autocorrelation function was estimated, and the value of the autocorrelation 

local maxima ( ( )iiRpeak - a measure of the fundamental frequency’s presence) 

was analyzed. The pitch density for each snore was calculated as the fraction of 
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the snoring time where the pitch is detectable ( ( )iiRpeak  >0.5) over the total 

snoring time : 

( ) ( ) s

N

i iis NRpeakbooltyPitchDensi
s

 = 5.0              (3.2) 

where Rii is the autocorrelation function of the ith frame and Ns  is the number of 

frames in the sth snore. Actually, it is a measure for how long the vibration 

frequency (which is a factor in the snoring sound production) remains stable.  

 

3.3.6. Preliminary attempts 

In the following section I will present some preliminary attempts for features 

extractions which are very accepted in the field of sound processing; and 

reported by others as with potential ability to detect OSA using snoring; 

however, those features were "abandoned" due to poor performances on our 

database. The reason for given these within this section (and not within the 

results) is that we don't want to lead the reader into insignificant results that were 

not integrated in the general proposed system. 

The features are the pitch frequency and the first three formant frequencies. Box-

plots of those features, benign versus apneic patients are presented in figure 3.13. 

In every feature, both groups reveal similar behaviours, i.e. cannot be useful as 

discriminative features.  

As mentioned in section 2.2.3, Sola-soler et al [2002] reported that apneic 

patients reviled lower pitch values and higher variance. Our results oppose their 

results and support Miyazaki et al [1998] saying that the pitch value is affected 
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by obstruction site, and therefore cannot differentiate benign and apneic snorer. 

Ng et al [2006, 2007] reported that formant frequencies are higher for apneic 

patients. Again, the presented results are contradictory. As we see it, the main 

reason for their inconclusive result is the limited validation; in those studies, only 

few snores of only few subjects were investigated. 

 

 

Figure 3.13: Formants and pitch frequency of benign versus apneic snorers (AHI threshold 10 h-1). 

Patient characteristics can be obtained in table 4.2. 
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3.4. OSA recognition 

The following section describes the approaches taken in order to either classify a 

subject into two or three degrees of OSA severity, or to directly estimate 

subject's AHI. In addition, all the validation methods will be detailed. 

 

3.4.1. OSA Classification 

In our work we suggest two classification approaches. Both based on Bayes 

decision between Gaussian models.  

First approach is classification into 2 categories – non OSA or OSA subjects, 

using thresholds of AHI>10 event/h, or AHI>20 event/h (which is a rule of 

thumb for CPAP treatment). Second approach is classification into three degrees 

of severities (non OSA – AHI<10; mild to moderate OSA – 10<AHI<30; and 

severe OSA – AHI>30). 

The classifiers were fed by five-dimension feature vector x j (j is the subject 

index) which was assigned to each subject, as detailed in the previous section. As 

initial step, the feature vector was normalized to obtain equal unitary variance in 

each dimension (every dimension were divided by its' standard deviation).  

 

The classification performances were estimated using two main methods, the 

resubstitution method and the 5-fold cross validation method [Fukunaga, 1990]. 

Together, we have indication for possible over-fitting, i.e. whether the 

complexity of the classifier is suitable for the amount of data. Shortly, in 

resubstitution method, the system is validated with the same data set that trained 

the model, therefore it said to be optimistic estimation of the error. However, 5-



Acoustic analysis of snoring sound signals in patient with obstructive sleep apnea 

Ben-Israel Nir 

2010 

 

44 

 

fold cross-validation is pessimistic estimation - the original sample is randomly 

partitioned into 5 subsamples. Of the 5 subsamples, a single subsample is 

retained as the validation data for testing the model, and the remaining 4 

subsamples are used as training data. The cross-validation process is then 

repeated 5 times (the folds), with each of the 5 subsamples used exactly once as 

the validation data. The 5 results from the folds then can be combined to produce 

a single estimation. 

In addition, we perform (3rd method) the holdout method, i.e. we separate the 

entire subjects to system-design dataset (n=55), and validation dataset (n=30), 

according to the PSG diagnosis date. This is another way to validate our results; 

this way is more acceptable with clinical experiments evaluation.  

For two-class classification, sensitivity and specificity rates will be obtained, 

whereas for three class classification, a confusion matrix will be presented. The 

performance of the classifier for different working points will be obtained from a 

receiver operating curve (ROC) and the area under this curve (AUC) will be 

determined. 

 

3.4.2. Apnea Hypopnea Index estimation 

Using multivariate regression model, fed by the entire set of features, we able to 

estimate the OSA severity (AHIEST), i.e. we estimate an equation which binds the 

proposed features (independent variables) to AHIEST (dependent variable): 

                           AHIEST = [𝑎0    …     𝑎5] ∙ [1 𝐹𝑒𝑎𝑡1     …     𝐹𝑒𝑎𝑡5]𝑇                  (3.3) 

Where a0...5 are the regression coefficient, and Feat1...5 are the proposed five 

features. 
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Altman Blend plot [Bland et al, 1986] was used to determine agreement between 

gold standard AHIPSG and AHIEST, in this analysis we compute the limits of 

agreement that specified as bias ± 1.96 STD (average difference ± 1.96 standard 

deviation of the difference). The diagnostic agreement approach [White et al, 

1995] was used to assess the accuracy of our system in OSA prediction. 

Diagnostic agreement is defined when: AHI>30 on both assessments6 or, if 

AHIPSG<30 and AHIEST was within10 events/h; Overestimate is defined when 

AHIEST was 10events/h greater than AHIPSG (both<30/hour); Underestimate is 

defined when AHIEST was 10events/h less then AHIPSG (both<30/hour). Shortly, 

the motivation of using such approach is that there are no well-defined "cut-off" 

which above or below sleep apnea syndrome diagnosed or rejected, moreover, 

tiny changes in AHI between our system and the PSG might be clinically 

unimportant, whereas, regular threshold analysis might interpret it as miss-

classification.  

  

 

6 Originally, White et al define this threshold at 1995 to be 40h-1 but according to nowadays 
conventions we modify the threshold to be 30h-1. 
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4. Experimental Setup 

The Institutional Review Committee of the Soroka Medical Center (Helsinki 

Committee) approved the study protocol. 

 

4.1. Subjects 

Between January 2008 and August 2010 we recruited ninety three adult subjects , 

57 males and 36 females, age 53±13 year, BMI=31.7±5.1 kg/m2 (Table 4.1), 

with “typical” symptoms of OSA [Tarasiuk et al, 2006] (Table 4.1), that were 

referred for PSG evaluation by otolaryngology (ENT) surgeons or 

pulmonologists. Eight patients (2 males and 6 females, AHI=8.7±3.9) did not 

snore and therefore were excluded from statistics; further detail regard those 

patient and how we "treat" them can be found in the discussion. Patients with 

facial abnormalities, subjects undergoing CPAP treatment, or subjects who have 

previously performed PSG, were excluded.  

 

Table 4.1 represents in addition, the characteristics of system-design and 

validation group separately (the groups for the holdout methods for evaluation of 

the system performance). There were no significant differences between the 

groups in terms of AHI, age, BMI, sleep assessments or co-morbidities (student 

t-test, p values are presented in the table). 

 

Table 4.2 will exhibit essential patient characteristics according to three 

categories of OSA severities. 
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Table 4.1: Subject Characteristics and main co-morbidities . 

 All System Design Validation P value 

N 85 55 30  

Age (years) 53.2±13.5 51.6±12.9 56.1±14.1 0.16 

Gender (M/F) 55/30 35/20 20/10  

BMI (kg/m2) 31.7±5.0 31.8±4.9 31.6±5.3 0.88 

ESS (score) 9.33±5.6 9.0±6.0 9.7±4.9 0.63 

Reported Snoring 
(yes) 

92% 89.5% 96% 0.25 

Tobacco Smoking 
(yes) 

59.7% 61.2% 57.1% 0.15 

TST (min) 335±52 331±52 344±52 0.28 

Sleep efficiency (%) 80.4±11.4 80.9±11.2 79.4±11.7 0.55 

WASO (minutes) 47±35 46±35 49±35 0.72 

Ar + Aw index 
(events/hr) 

32.1±21.2 31.0±20.8 34.1±21.9 0.53 

S1 (%) 2.7±3.9 2.2±3.5 3.5±4.5 0.17 

S2 (%) 72.2±11.7 73.3±11.1 70.3±12.5 0.28 

S3+4 (%) 9.8±7.8 9.9±7.7 9.7±8.0 0.91 

REM (%) 15.4±9.9 14.8±10.7 16.5±8.4 0.43 

AHI (events/hr) 20.8±18.9 19.4±18.1 23.4±20.0 0.37 

Mean wake SaO2 
(%) 

96.6±1.6 96.5±1.7 96.8±1.3 0.31 

Nadir SaO2 (%) 82.4±8.5 81.9±9.0 83.3±7.3 0.44 

T90 (%) 8.4±13.9 9.0±15.3 7.5±11.2 0.62 

DI (events/hr) 19.2±17.3 17.4±15.8 22.5±19.3 0.23 

Detected Snores 

(number) 
1195±945 1257±1111 1147±870 0.59 

Co morbidities 

(% of subjects) 
    

HTN  54 50 61.5 0.34 

CVD 60.5 60 61.5 0.63 

Diabetes 29.3 26.5 34.6 0.48 

AHI – apnea hypopnea index; Ar + Aw index – number of arousal and awakening events per hour of 

sleep; TST – Total sleep time; WASO – wake after sleep onset; DI – desaturation index;  HTN – 

Hypertension; CVD – Cardiovascular disease (include hypertension, ischemic heart disease, and/or 

stroke); Prevalence values are related to past or present diagnosis. 
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Table 4.2: Subject Characteristics separated according to OSA severity 

 
Number 

(Male/Female) 
Age BMI AHI 

analyzed snores 

per subject (#) 

Non OSA 
AHI<10 

13/18 50.9±13.4 30.6±5.4 5.7±2.6 1241±987 

Mild OSA 
10<AHI<30 

27/8 52.7±13.9 31.2±4.3 17.9±5.8 1186±1019 

Severe OSA 
AHI>30 

16/3 57.6±12.5 33.2±5.7 50.5±15.4 1136±760 

AHI – apnea hypopnea index (event/h); BMI – body mass index (kg/m2) 

 

4.2. Standard OSA evaluation 

Patients were referred to sleep laboratory for standard OSA evaluation 

procedure: 

Questionnaires: Subjects completed a validated self-administered sleep 

questionnaire. [Rotem et al, 2003 ; Tarasiuk et al, 2006] The Epworth sleepiness 

scale was used to evaluate daytime sleepiness [Johns et al, 1991]. 

Polysomnography (PSG): Subjects underwent PSG as previously described 

[Rotem et al, 2003]. They reported to the laboratory at 8:30 PM and were 

discharged at the following morning. Subjects were encouraged to maintain their 

usual daily routine and to avoid any caffeine and/or alcohol intake on the day of 

the study. Shift workers did not perform the PSG study in the week following 

shift duty.  Overnight PSG included recordings (Viasys, SomnoStar Pro, Yorba 

Linda, CA, USA) of EEG (C3/A2, C4/A1, and O2/A1, O1/A2), 

electrooculogram (right and left outer canthus), electromyogram, and 

electrocardiogram. Airflow (pressure transducer, Pro Tech Monitoring Inc, 

USA), Chest and abdominal efforts (inductive plethysmography, Respitrace 

Ambulatory Monitoring) and arterial oxyhemoglobin saturation (Respironix 
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Movametrix, USA) were recorded. Nocturnal sleep/wake and sleep stages were 

scored in accordance with the Rechtschaffen and Kales criteria [Rechtschaffen et 

al, 1968]. Arousals and awakenings were scored according to the American 

Sleep Disorders Association task force recommendation [Sleep Disorders Atlas 

Task Force, 1992]. Obstructive apnea was defined as paradoxical breathing for at 

least two respiratory cycles with complete cessation of nasal airflow. A hypopnea 

was scored when the paradoxical breathing was accompanied by a reduction of at 

least 50% in airflow, resulting in either an arousal or in oxygen desaturation of at 

least 4% [American Thoracic Society, 1996]. Apnea Hypopnea Index (AHI) was 

calculated as the number of respiratory events per hour of sleep.  

 

4.3. Data acquisition  

A non-contact directional condenser microphone (RØDE®, NTG-1) with a 20–

20,000 Hz frequency range was placed 1m above the patient's bed (figure 4.1). 

The microphone was connected to an audio recording device (Edirol R-4 Pro 

portable recorder) which includes a pre amplifier, A/D converter and internal 

80G Hard-Disk. The recorded data was transferred to our lab for further analysis. 

The synchronization of the recorded signal to PSG onset was done offline using 

designated algorithm (detailed in section 3.1.1). To facilitate the sync-process we 

guided the sleep-lab staff to clap hands toward the microphones right after lights 

off. 

During the dissertation period, we attended the sleeping lab repetitively and 

guided the lab's staff through our needs. 
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Figure 4.1:  Left - The R-4 Pro 4 channel recorder located in the sleep laboratory's control room; 

Right - a Patient during PSG test. Our microphone is located 1m above the bed. 

 

 

4.3.1. Database Organization 

 Characterizations of the database index which is easy to retrieve and maintain 

had an utmost importance for the success of the research. The generated database 

contains the audio signals, the patient details (the medical secrecy constituted a 

main issue in the data organization) and the PSG data (contains all the PSG 

channels, i.e. sleep stages, the times of the apnoea\hypopnoea events etcetera). 

Special care was given to maintain data backups. 

  



Acoustic analysis of snoring sound signals in patient with obstructive sleep apnea 

Ben-Israel Nir 

2010 

 

51 

 

5. Results 

This chapter focuses on the results, step by step; snore detection, acoustic 

features and OSA recognition. 

5.1. Snore Detection 

The snore detection algorithm based on GMMs for snore and for noise events 

were trained and tested using the manually labelled events of the first fifty five 

recruited subjects. In total, 121400 snoring events and 77400 of noise events 

were manually segmented. 

Very good performance rates of 87-92% correct snore detection and 6-10% false 

positive was achieved using resubstitution and cross validation methods. The 

number of detected snoring events was 1195±945 per subjects (range 127-4030, 

table 4.1), and as such is sufficient for reliable statistics, and large relative to 

previous studies.  

Additional information such as sleep-wake data, according to EEG, did not 

improve detection rates of the algorithm. 

 

5.2. Feature Extraction 

Scatter-plots with regression lines of the five acoustic features versus AHI are 

presented in Figure 5.1. All selected features significantly correlate with AHI, i.e. 

as alone, has the ability to predict OSA severity. The open circle and close circles 

corresponded system-design (first 55 recruited subjects) and validation (extra 30 

subjects) groups respectively (hold out validation). For the regressions, Similar 

coefficients were observed for both groups (student t-test on the coefficient 
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between groups reveal all p values as larger than 0.3). Therefore, one regression 

was performed for the all 85 subjects. 

 

Figure 5.1: Acoustic Features Analysis. All selected acoustic features correlate with AHI (events/hr). 

Closed and open circles correspond to system design  and validation group, respectively. Mel-

Cepstability, running variance, and inter-event silence features were fitted using a linear regression 

model (ax+b). Apneic Phase Ratio was fitted after a nonlinear transformation of log-regression model 

(ln(ax)+b); and Pitch Density using a power regression model(axb+c). Y axes represent features values 

(arbitrary units). All r2 values were calculated using the linear regression. 

 

5.3. OSA recognition 

The following section described the results of the recognition process. Note that 

the merits of our research found expressions in the ability to classify subjects into 

3 categories of OSA severity and on top of that, to estimate subject's apnea-

hypopnea index. 

5.3.1. Non-OSA \ OSA classification 

Using the Bayes classifier, we classified the subjects into two groups using 

threshold of AHI>10 (events/hr). The obtain detection rates were 87-91% (CV-

resubstitution) sensitivity and 86-87% specificity (Table 5.1). The small gap 
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between resubstitution and cross validation can assure that the complexity of the 

classifier is suitable for the amount of data used for training.  

As for the holdout method, in the study design and validation study, the detection 

rates were ranged about 84-96%. Further details are presented in table 5.1. 

Results for threshold AHI >20 events/hr are shown as well. 

 

Table 5.1: System Performance. non-OSA \ OSA Classification.  

 
All subjects 

(n=85) 
System Design 

(n=55) 
Validation 

(n=30) 

AHI>10 
Detection Ratio 

(False Positive ratio) 

Res. 
0.913 

(0.856) 
Res. 

0.963 
(0.857) 0.842 

 (0.909) 
CV 

0.870 
(0.871) 

CV 
0.889 

(0.821) 

AHI>20 
Detection Ratio 

(False Positive ratio) 

Res. 
0.969 

(0.807) 
Res. 

1.000 
(0.939) 0.917 

(0.900) 
CV 

0.878 
(0.865) 

CV 
0.890 

(0.842) 

 

ROC curves corresponded to AHI>10, AHI>20 for resubstitution and cross 

validation are presented in figure 5.2. The AUC are presented on graph, showing 

high sensitivity and specificity in screening for OSA. As for the holdout method, 

plot are not shown due to redundancy, the obtained AUC were all above 0.9.  

  

The confusion matrices for classification into 3 categories of severities are shown 

in Table 5.2. The algorithm achieves 81% and 76.5% correct detection in 

resubstitution and cross-validation methods, respectively. 
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Figure 5.2: Receiver operating characteristic (ROC) curve. ROC curves of two AHI cutoff points, i.e., 

AHI >10 (left), >20 (right) (events/hr). Upper panel Resubstitution method, and lower panel, 5-fold 

cross validation method. AUC – Area under ROC curve. 

 

Table 5.2: System Performance – three category classification. 

 

Confusion Matrices Resubstitution Cross Validation 

PSG                    Est. Non Mild Severe Non Mild Severe 

Non OSA (n=39) 
(AHI<10) 

0.85 0.13 0.03 0.87 0.10 0.03 

Mild OSA (n=27) 
(10<AHI<30) 

0.15 0.67 0.19 0.22 0.56 0.22 

Severe OSA (n=19) 
(AHI<30) 

0 0.11 0.89 0.05 0.11 0.84 

AHI – apnea hypopnea index (event/h); Est. – estimated severity; 

 

5.3.2. Apnea-Hypopnea Index Estimation (AHIEST)  

AHIEST was estimated by multivariate linear regression model, fed by the five 

features as the independent variables. Figure 5.3 present scatter plots of AHI 

determined by PSG (AHIPSG) versus estimated AHI, i.e. AHIEST. High and 
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statistically significant correlation (r2=0.71, p<0.001) were obtained. Note that 79 

of 85 subjects are within the 95% confidence interval. 

 

 

Figure 5.3: Scatter plots of estimated AHI (i.e., AHIEST) versus gold standard AHI determined by 

polysomnography (AHIPSG). The identity line and 95% confidence interval were added. 

 

Bland-Altman-plot is presented in Figure 5.4. Again, Only 5 of 85 subjects 

(5.9%) fall outside the two standard deviations lines. Moreover, the estimation 

was unbiased (mean of differences was 0.12 event/h-1). It should be noted that 4 

of those outliers (miss-agreements) correspond to severe OSA subjects which our 

system underestimates their AHI, however, their diagnosis remains moderate to 

severe OSA (AHI>23). 
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Figure 5.4: Bland-Altman-plot. Lines indicate the average difference and 2 standard deviations. very 

good agreement with the gold standard AHIPSG is obtained. 

 

Finally, using the diagnostic agreement approach [White et al, 1995] we found 

eighty percent of diagnostic agreements with PSG (Table 5.3); results for hold-

out method are presented as well. 

 

Table 5.3: Diagnostic Agreement 

 
All Subjects 

(n=85) 
System Design 

(n=55) 
Validation 

(n=30) 

Agreement 0.80 0.76 0.87 

Under-Estimate 0.08 0.12 0.03 

Over-Estimate 0.12 0.12 0.10 
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6. Discussion and Conclusions 

 

An innovative algorithm for monitoring sleep apnea based on acoustic nocturnal 

signal was proposed and validated. Snore analysis, based on the proposed snore 

acoustic properties, which demonstrate the nocturnal instability of upper airways 

in OSA patients, allows differentiation of apneic and benign snorers. All the 

features found to be correlated, by themselves, with the AHI and when 

incorporated into OSA recognition system, subject's AHI (i.e. AHIEST) can be 

estimated. AHIEST was found to be an accurate and reliable approach for the 

detection of OSA and demonstrated very good agreement with AHIPSG. Further 

studies are required to determine the cost-effectiveness of the proposed approach. 

The following discussion considers these findings and other factors in the light of 

limitations of the study and current literature. 

 

One of the merits of this study is the ability to estimate AHI solely on snoring 

signal (AHIEST). Across a wide range of OSA severities, the AHIEST highly 

correlated with the AHIPSG. To our knowledge, none of the previous reports 

proposed estimation of AHI by snoring analysis. Van Brunt et al [1997], however, 

sought for an acoustical signature event, defined as a loud sound preceded by 

silence period, and quantify apneas events accordingly. A major limitation of their 

approach was the high sensitivity to artefact noises and the need for process 

automatization that was not performed and is essential for across-night snoring 

analysis. Our study provides ameliorations to Van Brunt’s approach by applying 

an event detection algorithm and trace for other indicators for obstructive events, 
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such as transient ascension of variances. Taken together, the proposed method to 

evaluate AHIEST is a relatively accurate and reliable approach for the detection of 

OSA having very good agreement with AHIPSG. 

 

In the current study we analyzed snoring signals collected from eighty-five adults 

with typical symptoms of OSA [Tarasiuk et al, 2006] undergoing in-laboratory 

PSG diagnosis. To the best of our knowledge, this is the largest study sample 

exploring acoustic properties of snoring signals across the night. Earlier studies 

investigated various snoring properties; however, their conclusions were based 

on relatively small number of subjects. In their papers, Sola-soler et al, evaluated 

6 subjects and 36 subjects [2002, 2007]; Fiz et al. used 17 subjects and 37 

subjects [1996,2010]; Ng et al, recruited 16 and 40 subjects [2007, 2009]; and 

Abeyratne et al, used 45 subjects [2005]. Moreover, the majority of the 

previously mentioned research based their analyses on few and manually selected 

snoring events, and as such, essential information such as inter-snore properties 

(between snore events and/or across time) was not explored. 

 

It should be noticed that the subjects we studied did not include patients with 

central sleep apnea. However, given the very low prevalence of central apnea 

among the referred population to diagnostic in sleep laboratories and the fact that 

the treatment of choice is usually the same, we do not consider this to be a major 

disadvantage. 
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Our approach is based solely on the analysis of acoustic snoring signals.  Snoring 

is a primary symptom of OSA [Hoffstein 1996]. However, absence of snores 

does not indicate that the subject does not have OSA. In our study 9% of the 

subjects did not manifest habitual snoring and were excluded from statistics; 

those patient were significantly with lower AHI. Characterization of patients 

suitable for our diagnosis must be considered. It can be said that our system 

suitable only for subject who habitually snore. However, it should be noted that 

our system can 'say' that the subject so not snore and therefore no decision was 

made.  

 

Our data show greater variances in snore characteristics among patients with 

AHI >10, both in frequency domain (Mel-Cepstability) and across the night 

(Running Variance). These findings support the thought that OSA is associated 

with functional abnormalities of the upper airways indicating collapsibility 

[Malhotra et al, 2002; Ayappa and Rapoport, 2003]. All the aforementioned 

studies explored jointly all the snores of a subject, without any reference to snore 

timeline across the night. Our study shows for the first time transient variations 

in the acoustic signal in adjacent to obstructive events (Figure 2). Such a 

perspective found expression in the Apneic Phase Ratio feature, which quantifies 

temporary accessions of feature variation around obstructive events, caused, 

probably, due to biological alterations of the airway patency during efforts to 

restore ventilation [Jordan et al, 2007]. 
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The feature, which best describe the relation to AHI (R2=0.51) is the Inter Events 

Silence, which is the most intuitive features, as it seek for the typical acoustic 

pattern of the apnea events itselves. However, OSA assessment is a combination 

of hypopnea events as well, which acoustically comes into expression by the 

sounds of breathing efforts. Those noises might mislead the silence detection, 

and as consequences, the estimated AHI of patients who mostly manifest 

hypopnea instead of full apnea, might be lower, i.e. consider as underestimation 

(due to the fact that only apneas can be detected by this feature). 

 

Acoustic analysis of snore signals in order to monitor sleep apnea is widely 

reported in the literature.  Type of used sensor, is one of the ways to differ 

between methods. In general, two types of microphones are utilized – non-

contact microphone and contact microphone (attached to the patient body). In our 

study we choose to use a directional non-contact condenser microphone. 

However, each type has its own superiority. Attached microphones are less 

sensitive to surround noises; however those noises usually came from other 

medical equipments and have constant properties which are easier to overcome. 

Oppositely, frequent blanket\body movements badly affect those microphones. 

On top of that, it is clear that non contact microphones are more convenient for 

the patient and as alone, might supply more natural sleep, i.e. like-home sleep. It 

should be noted that, as widely reported, Body posture during sleep may also 

affect acoustic characteristics (snoring intensity) of snores and OSA severity 

[Oksenberg et al, 1998]. The use of a contact microphone might mimic this affect 

[Fiz et al, 2010]. Therefore, when using ambient microphone, as we do, it is 
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important to use features which are less sensitive to changes in sound intensities 

(affected by sleep positions). The entire feature we used designed to be robust: 

Mel-Cepstability based on the cepstrum coefficient [Deller, 2000] which not 

effected at all; Inter-Event-Silent based on the event detection which has an 

adaptive energy threshold; Pitch Density based on the autocorrelation function 

and as such not affected; and the Running Variance and Apneic Phase Ratio are 

robust because the changes in the sleep position is relatively not frequent and as 

such, the calculated local variance will not be affected. In order to check the 

robustness of our features, a secondary experiment was conducted. We took ten 

signals of different patients, randomly magnify their amplitudes by random 

factors and when investigate their results compared to those the original signals 

yielded, similar conclusions were obtained. 

 

When comparing our ability to classify OSA subjects (threshold of AHI>10h-1) 

with more than 88% sensitivity and more than 86% specificity, to previous 

reported results (Table 2.2), our performance is superior. Fiz et al [2010] were 

the first to incorporate different features into a classifier for the detection of 

OSA. As aforementioned they investigated snore number, average intensity, and 

power spectral density parameters and used a logistic regression model for the 

assessment. In order to better compare our performances, we implemented their 

methodology, as they describe it in their paper and perform a validation using our 

database (on the first 55 subjects). A sensitivity of 71% and specificity of 68% 

were achieved using resubstitution method (they reported 87% and 71% 

respectively using only 37 subjects). The differences in the achieved results can 
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be explained by the following: (1) due to the relatively small database, there is 

possible under-fitting of their classifier; (2) they used tracheal-contact 

microphone which might result in different acoustic properties, and therefore 

these feature might not suit our settings; (3) it is also possible that extraneous 

noises, which more affect our type of microphone, influence our signals and 

therefore might mislead the feature extraction results. To conclude considering 

our relatively large database our result is similar or event better than previous 

reported attempts. 

 

Snoring analysis as we propose is not likely to replace the conventional diagnosis 

procedure of OSA through a polysomnographic study and a complete clinical 

evaluation, but it can significantly improve the management of this pathology. 

Automatic snoring analysis could also be helpful for the follow-up of snorers 

without OSA before and after application of medical and surgical therapies. 

 

Summary 

An algorithm for monitoring OSA based on acoustic snoring signal analysis is 

proposed. We believe that this study shows that the snoring analysis can be 

simple, adequate and reliable method for screening OSA. Our approach may 

address the growing needs for OSA screening diagnosis tools. 
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7. Future Work 

In the following section I will describe, by some key points, issues that should be 

further investigated. It should be noted that this study will be continued by other 

students in the Biological Signal Processing Lab, under the supervision of Dr. 

Yaniv Zigel. 

a) Snore detection algorithm – although the relatively good obtained 

performance. There are several ameliorations that should be considered. (1) 

First, normal breathing sound might contain additional information about the 

airway patency and flow limitation [Kulkas, 2010]. Therefore, isolate the 

breathing as well might able this analysis as well. (2) More modern 

classification approaches, such as Hidden Markov Model, might improve 

classification results. This approach gives additional significance to the 

timeline. For instance, it is clear that long sequence of snores might indicate 

that next event will be snore as well or at least increase the probability to be a 

snore event. (3) As for now, the algorithm is very time consuming. The 

effectiveness of the algorithm in sense of operation time should be handled. 

b) Feature extraction – Recently, as aforementioned, few studies proposed, 

without a validation, some "sophisticated" acoustical properties such as 

higher order spectra, wavelets, nonlinear interactions etcetera. Such 

perspectives should be further investigated. 

c) Super Snore – Without any sufficient basis, special analysis of pre- or post- 

apneic snores might reveal novel properties. These snores seem to be unique; 

usually shorter and more energetic. 
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d) Sleep Positions – It is said that sleep position might affect acoustic properties 

of the snore. Further investigation should explore these affects on our 

features. 

e) Sleep Stages - Moreover, sleep stages and their affect on snore acoustics, 

should be investigated in order to deepen our knowledge regard snore 

acoustics. Penzel et al [2001] study the relationship between sleep stages and 

the collapsibility of the upper airways. They showed that it is not mediated by 

sleep stages. However, contrary to Penzel’s results, few researchers 

[Hoffstein, 1996; Perez-Padilla et al, 1987], suggested that because airway 

elastance depends on the muscle tone, determined by the neural output to 

upper airway muscles and the sympathetic activity, it is expected that the 

presence of snoring will be different during REM and non-REM sleep.  

A preliminary trail can be observed in figure 7.1. The first 3 AR coefficients 

were extracted from each snore of a random selected subject (AHI=7.6h-1). 

These coefficients were plotted, while all the snores from NREM sleep 

(larger asterisk, blue) were separated from the ones occur during REM sleep. 

We can clearly see the affect of sleep stages on this subject, whereas, this 

isn't the situation for all the subjects. Further research is required. 
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Figure 7.1: the effect of REM sleep on the snore spectrum (which represented by the AR coefficients) 

for randomly selected subject (AHI 7.6h-1).  

 

f) Children – To the best of my knowledge, there is no literature regard snore 

acoustics for the diagnosis of apnea among children. Such research might be 

revolutionary. 

g) At home re-test – Sound base analysis is vulnerable by extraneous noises. 

However, those are well controlled in our laboratory settings. Further studies 

should explore reproducibility of the results by comparing in-laboratory and 

at-home environments. In addition - care should be given to overcome 

different noises in other settings. 

h) Classification – In our study we used simple Bayes classifier for the OSA 

detection. Testing different classifiers might improve the performance. One 

possibility is to examine support vector machine (SVM) [Fan et al, 2005]. 
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