
SLEEP, Vol. 35, No. 9, 2012 1299 Analysis of Nocturnal Snoring Signal—Ben-Israel et al

INTRODUCTION
Obstructive sleep apnea (OSA) is a chronic disorder affect-

ing 2% to 7% of adults and can lead to considerable morbidity.1 
Partial or complete collapse of the upper airway during sleep 
has different effects on the human body, ranging from noisy 
breathing (simple snoring)2 to cardiovascular morbidity.3 Snor-
ing is the most common symptom of OSA, occurring in 70% 
to 95% of patients.4 The estimated prevalence of self-reported 
snoring in the general population extended over a wide range 
from 16% to 89%5-8; this prevalence depends on awareness, 
age, culture, and biased bed partner complaints.4,9,10 Neverthe-
less, self-reported snoring is considered a poor predictor of 
OSA because of the great prevalence of snoring in the general 
population.4,11,12

Little is known about acoustic characteristics of snoring 
events in adults. Earlier studies investigated snoring sound in-
tensity,13 spectral,14-16 and pitch-related17,18 features. Fiz et al.19 
used computerized snore detection algorithm enabling full-night 
analysis. The majority of those studies focused on intra-snore 
properties by analyzing snore-by-snore events. It is possible that 
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the biological instability of the upper airway formation across 
the night, and especially during obstructive events, may lead 
to alterations in inter-snore properties, i.e., between clusters 
of snore events and across the night. This perspective of snore 
analysis was not sufficiently explored. Analysis of sequential 
properties of snores across the night as a measure of inter-snore 
properties revealed that OSA patients have greater variances of 
snore duration, separation, and average power. However, incon-
clusive findings were reported regarding the prediction of AHI 
by inter-snore measures.20

It is possible that the snoring signal carries essential infor-
mation able to discriminate between patients of different OSA 
degrees of severities and simple (non-OSA) snorers. In the cur-
rent study, we developed and validated a snore analysis algo-
rithm enabling estimation of apnea hypopnea index (AHIEST) 
based solely on analysis of snoring signals acquired by a non-
contact microphone. In this study we explored and combined 
inter- and intra-snore properties to determine AHIEST in patients 
referred for polysomnography (PSG) and compared it to AHI 
determined by PSG (AHIPSG).

METHODS

Setting
University affiliated sleep-wake disorder center and biomed-

ical signal processing laboratory.

Subjects
We recruited 90 consecutively and prospectively adults 

(aged 19 to 87 years, 33/57 women/men) referred to the Sleep-
Wake Unit of Soroka University Medical Center for PSG OSA 
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diagnosis (starting February 2008). We selected the first 60 
subjects (patients) for the system training (design) study; the 
remaining 30 subjects (starting May 2009) were included in 
the blind validation study. The Institutional Review Commit-
tee of the Soroka Medical Center approved the study protocol 
number 10141.

Study Protocol
A system-design study was performed in which an acoustic 

screening algorithm for obstructive sleep apnea was developed 
(Figure 1) to determine AHIEST. Snoring events were automati-
cally located, segmented, and isolated by a snore detection ap-
proach based on Gaussian mixture model (see supplemental 
methods); this approach distinguishes snores from irrelevant 
noises, such as movements, linen noises, speech, and other in-
terferences. Using the detected snore events, 5 acoustic features 
were developed and extracted per subject; these features ex-
press the acoustic properties of the snores and emphasize the 
differences between apneic snorers and simple snorers. These 
features were used for training a Bayes classifier,21 which aimed 
to classify the subjects into 2 groups: OSA snorers and simple 
snorers. The classifier was tested by accepted performance 
evaluation methods such as re-substitution and leave-one-out 
(LOO) methods (using the design dataset) and a blind test (us-
ing the validation dataset). In addition, AHI was estimated (i.e., 
AHIEST) using a multivariate regression model; this regression 
model uses the same 5 acoustic features in order to estimate 
the AHIEST of each subject (see supplemental methods). Valida-
tion study was performed on a separate group of consecutive 
subjects, for whom the snoring analysis was performed using 
a blind design, i.e., without pre-knowledge of the PSG results.

Acoustic Features
Five acoustic features (i.e., individual measurable heuristic 

properties of the snore signal) were extracted (see supplemen-
tal material for detailed and formulated features’ descriptions): 

(1) Mel-Cepstability is a measure of the entire night spectrum’s 
stability, defined as the sum of variances of 12 Mel Frequency 
Cepstrum Coefficients22 (common representation of the audio 
spectrum) normalized by the total energy of the snores. (2) 
Running Variance quantifies the inter-snore variability of the 
snore’s energy across the night. All the snores were clustered 
into groups according to their proximity and the within-group 
variance was evaluated; then the global mean was calculated 
for each patient. (3) Apneic Phase Ratio represents the rela-
tive duration when the upper airways are collapsed, defined 
as the relative number of snore groups with energy variance 
larger than a specific threshold. (4) Inter-Event Silence counts 
the acoustic energy pattern of obstructive apneic events, i.e., si-
lence between 2 sound events. (5) Pitch Density17 is a measure 
of the stability of the tissue’s vibration frequency.

Data Collection
Prior to nocturnal in-laboratory PSG all subjects completed 

a validated self-administered sleep questionnaire.3,23-25 The 
Epworth Sleepiness Scale (ESS) was used to evaluate daytime 
sleepiness.26 Apneas and hypopneas were defined using the 
American Academy of Sleep Medicine criteria.27 An apnea 
was defined as a decrease in airflow ≥ 80% from baseline for 
≥ 10 sec. A hypopnea was defined as a decrease in airflow ≥ 
50% airflow reduction and ≥ 4% desaturation for ≥ 10 sec. 
Apnea hypopnea index (AHI) was calculated as the number of 
respiratory events per hour of sleep.

Acoustic signals were recorded using a non-contact direc-
tional condenser microphone with a frequency range of 20–
20,000 Hz (RØDE, NTG-1), placed 1 m above the bed and 
connected to an audio recording device (Edirol R-4, Belling-
ham, WA, USA). Each recorded signal was digitized (PCM, 16 
bits per sample, 44,100 Hz), down sampled to 16 KHz, and 
synchronized with PSG study onset. This procedure enables re-
liable acquisition of full-night audio signal and ensures that all 
the snores (and other low intensity audio events) are recorded, 
minimizing the possibility for false periods of silence detection.

Data and Statistical Analyses
Acoustic and statistical analyses were performed using 

MATLAB (R-2010b, The MathWorks, Inc., Natick, MA, 
USA). Both the system design study (n = 60) and the validation 
study (n = 30) had similar data handling protocols (Figure 1). 
Performance characteristics were conducted separately for the 
design study and the validation study.

Statistical power (α = 0.05) was calculated for the validation 
set based on AHIEST values extracted from the system design 
data set. A sample size of 25 subjects was calculated to provide 
≥ 95% power to detect significant differences between OSA 
(AHI > 10) vs. non-OSA subjects (AHI ≤ 10). Therefore, 30 
subjects were recruited for the validation study. PSG data were 
compared between non-OSA and OSA subjects and between 
design and validation study groups using student t-test or χ2 
test. The square of the correlation coefficient (R2) between each 
of the 5 acoustic feature values and the AHI was calculated. In 
case of nonlinear relations (as in apneic-phase-ratio and pitch 
density), a nonlinear transformation was applied prior to cor-
relation evaluation. Using multivariable regression, fed by the 
entire set of features, we estimate the OSA severity (AHIEST), 

Figure 1—Block diagram of the study protocol. System-design study 
(n = 60 subjects) in which an acoustic screening algorithm for obstructive 
sleep apnea was designed. First, (A) The snore detection algorithm 
(trained by manually segmented events) was applied to isolate snore 
signals; (B) Five acoustic features were extracted; (C) The features 
together with polysomnography results, used for model training; (D) 
Model parameters used. Validation study was performed on 30 subjects 
by same initial procedures. The extracted acoustic features matched 
to the model (trained by the system-design data), in order to assess 
estimation for the subjects’ OSA severity.
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i.e., estimate equation that binds the proposed features (in-
dependent variables) to AHIEST (dependent variable).

Comparing AHIEST with AHIPSG was done by: (1) Altman 
Bland plot28 to determine diagnostic agreement between the 
gold standard AHIPSG and AHIEST. (2) The diagnostic agree-
ment approach29 was used to assess the accuracy of our 
system in OSA prediction. Diagnostic agreement is defined 
when AHI > 40 on both assessments, or if AHIPSG < 40 and 
AHIEST was within 10 events/h; overestimate and underes-
timate are defined when AHIEST is 10 events/h more or less 
than AHIPSG (both < 40 events/h), respectively.

The classification performances were estimated using 
the resubstitution method (optimistic estimation) and the 
leave-one-out validation (pessimistic estimation) method,21 
which provides an indication for possible over-fitting, i.e., 
whether the complexity of the classifier is suitable for 
the quantity of data. For the classification (AHI < 10/20 
event/h), sensitivity and specificity were obtained, together 
with the un-weighted Cohen kappa coefficient (κ).30 Per-
formance for different working points was obtained from 
a receiver-operating curve (ROC) and the area under this 
curve (AUC). Data are presented as mean ± SD. The null 
hypothesis was rejected at the level of 5%.

RESULTS

Patients
We approached 90 potentially eligible patients. Eleven 

patients reported that they snored < 3 nights/week, and 16 
reported that they “don’t know” how many days a week 
they snore. No significant differences were found between 
system design (N = 60, m/f 36/24) and validation (N = 30, 
m/f 21/9) groups in age, BMI, snoring, ESS, AHI, associ-
ated morbidities, or tobacco smoking (Table 1).

Snore Detection
During system design, a snore detection algorithm was 

trained and tested using large amounts of manually labeled 
events (121,400 snoring events and 77,400 noise events). 
Very good performance rates of 87% to 92% correct snore 
detection and 6% to 10% false positive were achieved us-
ing resubstitution and cross-validation methods. Finally, the 
mean number of detected snoring events was 1267 (range 
127–4030) and 1295 (range 146–3519) per subject in the 
system design and validation study, respectively (P = 0.46; 
Table 1).

Feature Extraction
Table 2 presents for each feature its values and its cor-

relation with AHI for both groups. No significant differ-
ence was found between groups (all P > 0.3). All 5 selected 
acoustic features were found to be significantly correlated 
with AHI (all P < 0.01). The most correlated feature was 
the inter-event silence. The running variance feature was 
found to be higher in adjacent to apnea events, as exhibited 
in Figure 2A.

Estimated Apnea and Hypopnea Index (AHIEST) was 
calculated by multivariate linear regression model (trained 
by the system design group), fed by the 5 features as the 

independent variables. AHIEST was found to be correlated with 
AHIPSG (study design: r2 = 0.81, P < 0.001; validation: r2 = 0.71, 
P < 0.001). Scatter plots of AHI by AHIPSG versus AHIEST are 

Table 1—Subject characteristics and main comorbidities

System Design Validation P value
N 60 30
Age (years) 52.1 ± 12.8 55.5 ± 14.1 0.27
Gender (M/F) 36/24 21/9
BMI (kg/m2) 31.3 ± 4.9 31.1 ± 6.0 0.85
ESS (score) 9.3 ± 6.1 10.5 ± 5.6 0.38
Referred to OSA evaluation (%) 97% 100%
Report snore ≥ 3 days/week 
(yes) 81% 82%
Tobacco smoking (yes) 57% 48%
TST (min) 332 ± 51 340 ± 52 0.53
Sleep efficiency (%) 81.0 ± 11.0 78.3 ± 11.7 0.29
WASO (min) 46 ± 35 50 ± 35 0.58
Ar + Aw index (events/h) 29.4 ± 19.4 32.4 ± 22.4 0.54
S1 (%) 2.4 ± 3.5 3.6 ± 4.4 0.20
S2 (%) 72.8 ± 11.0 72.1 ± 12.1 0.79
S3+4 (%) 9.8 ± 7.4 9.6 ± 8.3 0.94
REM (%) 15.3 ± 10.7 14.7 ± 7.8 0.77
AHI (events/h) 17.7 ± 17.0 22.9 ± 20.4 0.24
Mean wake SaO2 (%) 96.6 ± 1.6 96.8 ± 1.3 0.63
Nadir SaO2 (%) 82.9 ± 8.9 83.1 ± 7.15 0.91
T90 (%) 7.9 ± 14.8 7.5 ± 11.3 0.88
DI (events/h) 15.8 ± 14.8 22.3 ± 19.7 0.12
Detected snores (number) 1194 ± 1101 1033 ± 910 0.46
Comorbidities (% of subjects)

HTN 46 59 0.27
CVD 42 39 0.9
Diabetes 24.0 29.5 0.6

AHI, apnea hypopnea index; Ar + Aw index, number of arousal and awakening 
events per hour of sleep; CVD, cardiovascular disease (include hypertension, 
ischemic heart disease, and/or stroke); DI, desaturation index; HTN, 
hypertension; TST, total sleep time; WASO, wake after sleep onset. Prevalence 
values are related to past or present diagnosis. T-test and χ2 test (for morbidity) 
were used to determine statistical significance between variables.

Table 2—Acoustic feature analysis

Feature name

System Design Group 
(n = 60)

Validation Group 
(n = 30)

R2 Feature Value R2 Feature Value
Mel Cepstability 0.42 0.1 ± 0.06 0.34 0.2 ± 0.07
Running Variance 0.36 0.5 ± 0.23 0.42 0.6 ± 0.22
Apneic Phase Ratio 0.41 0.5 ± 0.29 0.38 0.5 ± 0.31
Inter Event Silence 0.62 142 ± 96 0.65 157 ± 84
Pitch Density 0.19 0.2 ± 0.16 0.17 0.3 ± 0.12

Square of correlation coefficient (R2) of the feature values with obstructive 
apnea hypopnea index (AHI). Feature values are presented in arbitrary units. 
All features significantly correlated with AHI (P < 0.01). No significant differences 
in regression coefficients were found between groups. Values are mean ± SD.
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shown in Figure 3A; examining this figure, one can see that 
there is a slight trend towards a plateau at AHI > 30 events/h 
in the validation study. Examining the Bland and Altman plots 
(Figure 3B) comparing AHIPSG versus AHIEST showed no con-
sistent bias, i.e., the mean difference was only 0.5 and 3.5 
events/h for system design and validation, respectively. The 
plots also show that the AHIEST corresponded more closely to 
AHIPSG when the mean AHI was < 30 events/h in the validation 
study. Finally, using the diagnostic agreement approach,29 we 
found 80% to 83% diagnostic agreements with PSG (Table 3A). 

It should be noted that combining the 5 features into one model 
improves the correlation of AHI estimation (compared to each 
feature by itself).

Patient Classification
Using the Bayes classifier,21 we classified the subjects into 2 

groups using a threshold of AHI > 10 (events/h) and AHI > 20. 
In the validation study, the classification rates were 87% (80%) 
sensitivity (specificity) for AHI > 10 and 89% (78%) for AHI > 
20. For both AHI thresholds, Cohen κ was 0.667 (CI 0.39-0.93), 

Figure 2—Simple and apneic snoring phases. (A) Upper panel: time 
course of the running variance feature (arbitrary units); dots indicate 
simple snoring phase (i.e., ≥ 10 min distant from obstructive apnea 
events) and asterisk indicates apneic phase (i.e., < 4 min around each 
obstructive event). Middle panel: marking of obstructive apneas events 
(by polysomnography) by vertical lines. Lower panel: snore amplitude 
(arbitrary units). Note the ascension of the running variance values during 
apneic phase, i.e., around apnea events. (B) Upper panel demonstrates 
the acoustic signal of typical apneic phase of the same subject taken at 
the time indicated by right arrow in A. Note the instability of the snore 
signal. Lower panel: typical simple snoring phase taken at the time 
indicated by the left arrow in A. Note the differences in time base between 
A and B. Data were collected from a 62-year-old man, BMI = 28.7 (kg/m2), 
AHI = 33 (events/h), about 2 h after sleep onset.

Table 3—System performance

A Diagnostic Agreement
System Design (n = 60) Validation (n = 30)

Agreement 0.80 0.83
Underestimate 0.07 0.07
Overestimate 0.13 0.10

B Classification results
System Design (n = 60) Validation (n = 30)

Sen. Spec. PPV NPV κ(CI) Sen. Spec. PPV NPV κ(CI)

AHI > 10
Res. 0.90 0.79 0.72 0.94 0.66 (0.47-0.85)

0.87 0.80  0.82 0.86 0.67 (0.4-0.93)
LOO 0.76 0.78 0.72 0.82 0.53 (0.30-0.74)

AHI > 20
Res. 0.94 0.80 0.71 0.97 0.69 (0.50-0.88)

0.89 0.78 0.73 0.93 0.67 (0.4-0.93)LOO 0.83 0.77 0.70 0.88 0.60 (0.39-0.80)

AHI, apnea hypopnea index (event/h); LOO, leave-one-out method; Res., resubstitution method; Sen., sensitivity; Spec., specificity; PPV/NPV, positive/
negative predictive value (positive corresponds to correct classification of OSA); κ(CI), Cohen’s kappa coefficient and the confidence interval values.

Figure 3—System evaluation. (A) Scatter plots of estimated AHI (i.e., 
AHIEST) versus gold standard AHI determined by polysomnography 
(AHIPSG) of system-design (left panel) and validation (right panel) study. 
Solid line indicates identity line and dashed lines indicates 95% confidence 
interval. (B) Bland-Altman-plot of system-design and validation studies. 
Lines indicate the average difference and the 2 standard deviations. 
No consistent bias was found comparing AHIPSG versus AHIEST for both 
system design and validation.
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which is considered as good agreement.30 Full performance 
evaluation is represented in Table 3B. ROC curves correspond-
ed to the same AHI cutoffs (Figure 4) for the system design (up-
per panel) and validation (lower panel) studies. The AUC were 
all > 0.85, showing high sensitivity and specificity in screening 
for OSA.

DISCUSSION
We propose innovative approach for AHIEST based solely on 

snoring sound signals. Our data suggest that acoustic analysis 
can differentiate subjects according to AHI. An acoustic-based 
screening system may address the growing needs for OSA 
screening diagnosis tools.

Acoustic Features
In the current study, several acoustic features were examined 

and followed by implementation of novel ideas. The majority of 
earlier studies focused on a limited number of selected features 
and, as such, essential information was not sufficiently explored. 
Earlier studies mainly investigated intensity levels,13 pitch anal-
ysis,17,18 and formant frequencies14-16 of snoring sounds. Also, 
higher order spectral-based algorithms,31 sub-band energy dis-
tributions, and sequential properties20 were investigated in the 
context of snoring and sleep apnea. These acoustic features have 
been shown to be in statistical associated with OSA, but none of 
these studies have estimated AHI based on acoustic analysis of 
snoring across the night. In our study, we selected five acoustic 
features that best explain the relations between snoring and AHI. 
The selected features capture the energy dynamics and frequen-
cy information that is hidden in the snoring sounds. Some of the 
features (mel-cepstability and pitch density) contain intra-snore 
information, and the others (running variance, apnea phase ratio, 
and inter-event silence) contain the inter-snore information. Our 
data indicate that the inter-event silence was the best feature for 
predicting AHI (as a single feature, Table 2); nevertheless, esti-
mation of AHI solely by this feature results in poor prediction of 
AHI and therefore poor system performance. The unique combi-
nation of these five features gives a powerful multidimensional 
feature vector that is highly correlated with the AHI. Use of the 
multivariate approach was found, as expected, to outperform 
each of the single-feature performances.

Body posture during sleep may affect the acoustic character-
istics of snores,32 such as snoring intensity. Since body posture 
can change several times during sleep, we selected acoustic 
features that are minimally affected by sound intensity. For ex-
ample, the mel-cepstability feature, a spectrum based feature 
(based on the cepstrum coefficient),22 is not affected by sound 
intensity; the Inter-event silence feature is based on the event 
detection algorithm, which has an adaptive energy threshold; 
the pitch density is based on the autocorrelation function,22 and 
as such is not affected by sound intensity. However, it is pos-
sible that not only the sound intensity is affected by body pos-
ture, but also other acoustic properties. Further study should 
investigate the effect of sleep position on AHIEST.

Our data show greater variances in snore characteristics 
among patients with AHI > 10, both in frequency domain (mel-
cepstability) and across the night (running variance). These 
findings support the thought that OSA is associated with func-
tional abnormalities of the upper airways indicating collapsibil-

ity.33 However, all the aforementioned studies explored jointly 
all the snores of a subject without referring to the snore timeline 
across the night, as we did in this study. Our study shows for 
the first time transient variations in the acoustic signal adjacent 
to obstructive events (Figure 2A). Such a perspective found ex-
pression in the apneic phase ratio feature, which quantifies tem-
porary ascension of feature variation around obstructive events, 
caused, probably, by biological alterations of airway patency 
during efforts to restore ventilation.34

Estimated AHI (AHIEST)
One of the merits of this study is the ability to estimate AHI 

based solely on snoring signal using a non-contact directional 
microphone. Across a wide range of OSA severities, the AHIEST 
is strongly correlated with the AHIPSG. To our knowledge, none 
of the previous reports proposed estimation of AHI by snoring 
analysis and validated their results. Van Brunt et al.,13 however, 
sought an acoustical signature event, defined as a loud sound 
preceded by a period of silence (as can be seen in Figure 2B), 
and quantified apnea events accordingly. A major limitation of 
their approach was the great sensitivity to artifact noises and the 
need for process automation that was not performed and is es-
sential for across-night snoring analysis. Our study improves Van 
Brunt’s approach by applying an event detection algorithm, ap-
plying acoustic filtration, which enables avoiding misdetection of 
apnea due to slight breath hidden by background noise, and trac-
ing for other indicators for obstructive events, such as transient 
ascension of variances. Taken together, the proposed method to 
evaluate AHIEST is an accurate and reliable approach for the de-
tection of OSA having very good agreement with AHIPSG.

Study Strengths and Limitations
To our knowledge, this is the first study exploring acoustic 

properties of snoring using two different subject groups, i.e., 

Figure 4—Receiver operating characteristic (ROC) curve. ROC curves 
of 2 AHI cutoff points, i.e., AHI > 10 (left), > 20 (right) (events/h). Upper 
panel: system design group, evaluated by resubstitution method; lower 
panel: validation study. AUC, area under each ROC curve.
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system design and validation study using blind design. Earlier 
studies investigated snoring properties; however, their con-
clusions were based on a relatively small number of subjects 
without including a separate group for a validation study.13-19 
Our approach to estimating AHIEST used a single-channel device 
(directional non-contact microphone) that is simple for patients 
to operate without any body contact. Such a microphone is more 
convenient and less sensitive to artifacts from blankets and body 
movements; other environmental noises were controlled in our 
laboratory setting. Most likely, if subjects will be instructed to 
sleep alone at home during the proposed OSA screening test, 
the expected challenges will not be significantly different from 
our laboratory setting. Further studies should explore data 
reproducibility, mainly AHIEST, by comparing at-home to in-
laboratory data and by comparing multi-night data.35 Cathcart et 
al.35 recently explored night-to-night variation in snoring intensity 
concluded that more than one night is required to reliably explore 
this feature, supporting other investigators.36 Further studies are 
needed to explore night-to-night variability of AHIEST.

The snore detection system is an important part of the 
overall AHI estimation and classification system, and may 
minimize the potential bias of subjective snoring reporting 
by patients and/ or their bed partners.4,9,10 Since the snore 
detection system is trained using manually labeled sound 
events, it is somewhat biased by the human observer’s 
perception of snore sounds. In addition, the snore detection 
system is influenced by the number and diversity of snore 
events and the type of algorithm/ classifier used. In this 
study, several procedures were used to minimize the potential 
bias of the snore detector. First, the graphical user interface 
for the manual labeling of audio events enabled a trained 
research assistant to better identify the snore events by both 
visual and acoustic perception. Second, the snore detection 
algorithm was well fitted, thanks to the very large database 
used (121,400 snores and 77,400 noise events). And finally, 
a powerful multi-parameter approach (GMM that was fed 
numerous features, such as pitch and duration) was used.

Even though snores are the first symptom associated with 
OSA, very few OSA patients do not snore.2,4 Our system, which 
is based on snore signal detection, is able to identify whether 
the patient does not snore; in such rare cases the system may not 
report any result but may refer the patient for further diagnosis 
(i.e., PSG study). Finally, since all the data in the current study 
were obtained during laboratory PSG and reproducibility was 
not tested, further studies are required to explore the usefulness 
of this acoustic model for OSA screening at-home and in-
laboratory using a larger sample size and a wider range of AHI.

The Need
The “flood” of undiagnosed patients presenting with symp-

toms suggestive of sleep disordered breathing is a major chal-
lenge to decision-makers and requires a disease management 
approach. The demand for diagnostic services is governed by 
the great prevalence of the disorder, its associated comorbid-
ity, and increasing level of public awareness.10 However, < 
10% of patients with OSA are diagnosed; more than 80% had a 
missed diagnosis years before PSG, and only 10% of the refer-
rals were made as result of clinician-elicited history of sleep 
related complications.37

One of the main goals of sleep medicine today is to improve 
access to OSA diagnosis and treatment.38 On the other hand, re-
source availability (supply) is governed by the cost of obtaining 
a diagnosis, the number of facilities available, the number of 
sleep and allied health specialists, the policies governing reim-
bursement for ordering and interpreting results, and the level of 
adherence to practice guidelines.39 At present, resource avail-
ability is limited relative to demand. While multichannel sleep 
apnea monitoring devices can be used at home, there are a num-
ber of constraints for their use; these include cost-effectiveness 
limitations, reduced availability of technical and specialist ex-
pertise, and complexity for patient use at home.40

Summary
This study provides evidence that snoring analysis based on 

intra- and inter-snore properties can differentiate adult habitual 
snorers according to AHI. An acoustic-based system may ad-
dress the growing needs for OSA screening diagnosis tools. 
Further studies are needed to determine data reproducibility of 
this system and its cost-effectiveness as a potential screening 
tool for OSA.
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SUPPLEMENTAL MATERIAL

SUPPLEMENTAL METHODS

Study Protocol
A system-design study was performed in which an acoustic 

screening algorithm for obstructive sleep apnea was developed 
(Figure 1 in manuscript). Snoring events were isolated by a 
snore detection system. Five acoustic features (mel-cepstabili-
ty, running variance, apnea phase ratio, inter-event silence, and 
pitch density) were extracted and used for training a Bayes clas-
sifier, which was tested by accepted performance evaluation 
methods such as re-substitution and leave-one-out cross-valida-
tion methods, as previously recommended.1 Subjects were clas-
sified into categories of OSA severity according to the subject’s 
AHI. AHI was estimated (i.e., AHIEST) using a multivariate 
regression model and compared to the gold standard PSG re-
sult (i.e., AHIPSG) using Bland Altman analysis2 and diagnostic 
agreement approach (E3; see below). The validation study was 
performed on 30 subjects, for which the snoring analysis was 
performed blindly using the designed system.

Both the system design study and validation study had simi-
lar data handling protocols (Figure 1 in manuscript): (1) snore 
detection, (2) acoustic feature extraction, and (3) classification 
into OSA severity categories and AHI estimation. Acoustic 
analyses were performed using MATLAB (R-2008a, The Math-
Works, Inc., Natick, MA, USA).

Data Collection

Questionnaires
Subjects completed a validated self-administered sleep ques-

tionnaire.4,5 The Epworth sleepiness scale was used to evaluate 
daytime sleepiness.6

Polysomnography (PSG)
Subjects underwent PSG; they reported to the laboratory at 

8:30 PM and were discharged the following morning.5 Subjects 
were encouraged to maintain their usual daily routine and to 
avoid any caffeine and/or alcohol intake on the day of the study. 
Shift workers did not perform the PSG study in the week fol-
lowing shift duty. Overnight PSG included recordings (Viasys, 
SomnoStar Pro, Yorba Linda, CA, USA) of EEG (C3/A2, C4/
A1, and O2/A1, O1/A2), electrooculogram (right and left out-
er canthus), electromyogram, and electrocardiogram. Airflow 
(pressure transducer, Pro Tech Monitoring Inc., Tampa Bay, 
FL, USA), chest and abdominal efforts (inductive plethysmog-
raphy, Respitrace Ambulatory Monitoring), and arterial oxy-
hemoglobin saturation (Respironics Movametrix, Wallingford, 
CT, USA) were recorded. Nocturnal sleep/wake and sleep stag-
es were scored in accordance with the Rechtschaffen and Kales’ 
criteria.7 Arousals and awakenings were scored according to the 
American Sleep Disorders Association task force recommenda-
tion.8 The subject’s body posture was not recorded. Scoring was 
done by a trained technician using the traditional criteria4,5 and 
reviewed by a polysomnographer, and a report sent to the refer-
ring physician. Obstructive apnea was defined as an episode 
of complete cessation of breathing (airflow reduction > 80%) 

≥ 10 sec with continuing inspiratory effort. A hypopnea was 
scored when continuing inspiratory effort was accompanied by 
a reduction ≥ 50% in airflow, resulting in either an arousal or 
oxygen desaturation ≥ 4%. The AHI was calculated as the num-
ber of respiratory events (apnea/hypopnea) per hour of sleep.9 
A sleep physician explained the significance of the results to 
the patients (prior to the CPAP support program) with recom-
mendations for treatment.

Snore Detection
To isolate the snore events from background and transient 

noises (speech, coughs, body movements, etc.), a snore detec-
tion system was designed. First, an event detection algorithm 
was implemented based on an adaptive energy threshold. 
These detected events are suspected snore events; they are rel-
atively short and energetic. The energy threshold is calculated 
from a histogram of a 5-min moving window. Subsequently, 
the suspected events were classified as either snores or noise 
events using a Gaussian mixture model (GMM) classifier1 
(see description next section). The GMMs for the snores and 
for other nonspecific noises (order of 3 and 10 Gaussians, 
respectively) were trained using the following features (ex-
tracted from each detected event): 16 linear predictive coef-
ficients,10 average pitch value (calculated via autocorrelation 
method), event duration, total energy, and time from the be-
ginning of the event to its highest peak. This classifier was 
trained using manually labeled events. For this purpose, we 
developed a semi-automatic graphical user interface (GUI). 
The GUI automatically detects relatively high energy audio 
events (suspected as snores), including transient noises, then 
a researcher has to decide if each event is a snore or other in-
terference/noise; this decision was based on audio and visual 
perception using the GUI.

Gaussian Mixture Model (GMM)
A Gaussian mixture density is a weighted sum of M compo-

nent densities, as given by the following:
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=∑o o � (Equation 1)

where o is a D-dimensional feature vector of an event, bi(o), 
i = 1,…, M are the component densities, and ci; i = 1,…, M 
are the mixture weights. Each component density is a D-variate 
Gaussian function of the form
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with mean µi and covariance matrix Σi. The mixture weights 
have to satisfy the constraint 1

1M
ii

c
=

=∑ . The complete Gaussian 
mixture density is parameterized by the mean vector, the co-
variance matrix, and the mixture weight from all component 
densities. These parameters are collectively represented by

 λ = {ci , i , i ; i = 1,...M .
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For training GMMs, the maximum likelihood (ML) proce-
dure is adopted to estimate model parameters by maximizing 
the likelihood of GMM given the training data.

The identification (matching) algorithm is simple compared 
with the training process. Using the two trained models (snore 
GMM and noise GMM) and the feature vector, calculated from 
a new event, a general event classification decision (snore/non-
snore) is performed using log-likelihood ratio (LLR) scores,

s(o) = log p(o |λs) – log p(o |λn)� (Equation 3)

where λs is the snore model and λn is the noise model.

Acoustic Feature Extraction
For the classification and estimation of AHI, the following 5 

acoustic features were selected:
Mel-Cepstability is a measure of the entire night spectrum›s 

stability. This novel feature is based on the mel frequency 
cepstral coefficient (MFCC),10 which is a representation of the 
short-term power spectrum, based on a cosine transform of a 
log power spectrum, on a mel-scale of frequencies. The mel 
cepstability feature was defined as the sum of variances of 12 
MFCCs extracted from the highest energy frame in each snore, 
normalized by means of Es (the total energy of the sth snore):
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where ci is a vector of the ith MFCC of all the snores, S is the 
total number of snores by subject j.

Running Variance: In order to quantify inter-snore variabil-
ity across the night, the total energy of each snore was calcu-
lated. All the snores were clustered into groups, according to 
distance from the closest snore in the group: in cases > 1-min 
duration between the group and the snore, the snore was as-
cribed to the next group. The running variance, defined as the 

within group snore energy variance, was evaluated. For each 
patient, the global mean was calculated.

Apneic Phase Ratio: We defined “simple phase” as the 
portion of sleep when no apnea occurred within a time interval of 
10 minutes. “Apneic phase” was defined as the portion of sleep 
≤ 4 min around each apnea event. Reasonably healthy subjects 
exhibit fewer apneic phases than OSA patients. We assumed that 
due to biological alterations of the airway patency during efforts 
to restore ventilation, group of snores during an apneic phase 
would exhibit higher within-group variance. Apneic phase ratio 
was defined as the relative number of snore groups with variance 
larger than ζ, where ζ was chosen empirically.

Inter Event Silence: The acoustics of an apnea event can 
be characterized through its pattern of silence between 2 sound 
events. Only intervals > 10 and up to 90 seconds were investi-
gated, since 95% of the apneas last < 1.5 minute. The histogram 
of the silence periods durations in our experiment is exhibited 
in Figure S1. Furthermore, to verify that the subject does not 
breathe during “silence events” (i.e., having obstructive apnea), 
a background noise filtration was performed, using the spectral 
subtraction method.10 This procedure enabled detection of min-
imal breathing sounds that may be hidden by the background 
noise. It should be noted that OSA assessment is a combination 
of hypopnea events as well, which acoustically come into ex-
pression by the sounds of breathing efforts. Those noises might 
mislead the silence detection, and as a consequence, may lead 
to underestimation (due to the fact that only apneas can be de-
tected by this feature). An analogous apnea event detector has 
already been suggested.11

Pitch Density:12 is a measure of the stability of the tissue’s 
vibration frequency. Each snore event was subdivided into 30-
msec frames. For each frame, the autocorrelation function was 
estimated, and the value of the autocorrelation local maxima  
(peak(Rii) — a measure of the fundamental frequency’s 
presence) was analyzed. The pitch density for each snore was 
calculated as the fraction of the snoring time where the pitch is 
detectable (peak(Rii) > 0.5) over the total snoring time:

s
N

i iis NRpeakboolPitchDensity s∑ >= 5.0

� (Equation 5)
where Rii is the autocorrelation function of the ith frame and Ns 
is the number of frames in the sth snore.

Classification: A 5-dimension feature vector was assigned 
to each subject. The Bayes classifier1 was implemented to clas-
sify the subjects into 2 categories according to OSA severity. 
The naïve Bayes classifier assumes normal distributions for un-
correlated features. The parameters of the classifiers (groups 
means and covariance matrices) were estimated to maximize 
the likelihood of the training data. Once we have the classifier 
parameters, given a 5-dimension feature vector that represents 
a new patient, we can estimate the conditional probability that 
the patient is healthy or suffers from OSA.
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